Yang Zhang


2025

pdf bib
When GPT Spills the Tea: Comprehensive Assessment of Knowledge File Leakage in GPTs
Xinyue Shen | Yun Shen | Michael Backes | Yang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge files have been widely used in large language model (LLM)-powered agents, such as GPTs, to improve response quality. However, concerns over the potential leakage of knowledge files have grown significantly. Existing studies demonstrate that adversarial prompts can induce GPTs to leak knowledge file content. Yet, it remains uncertain whether additional leakage vectors exist, particularly given the complex data flows across clients, servers, and databases in GPTs. In this paper, we present a comprehensive risk assessment of knowledge file leakage, leveraging a novel workflow inspired by Data Security Posture Management (DSPM). Through the analysis of 651,022 GPT metadata, 11,820 flows, and 1,466 responses, we identify five leakage vectors: metadata, GPT initialization, retrieval, sandboxed execution environments, and prompts. These vectors enable adversaries to extract sensitive knowledge file data such as titles, content, types, and sizes. Notably, the activation of the built-in tool Code Interpreter leads to a privilege escalation vulnerability, enabling adversaries to directly download original knowledge files with a 95.95% success rate. Further analysis reveals that 28.80% of leaked files are copyrighted, including digital copies from major publishers and internal materials from a listed company. In the end, we provide actionable solutions for GPT builders and platform providers to secure the GPT data supply chain.

pdf bib
JailbreakRadar: Comprehensive Assessment of Jailbreak Attacks Against LLMs
Junjie Chu | Yugeng Liu | Ziqing Yang | Xinyue Shen | Michael Backes | Yang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Jailbreak attacks aim to bypass the LLMs’ safeguards. While researchers have proposed different jailbreak attacks in depth, they have done so in isolation—either with unaligned settings or comparing a limited range of methods. To fill this gap, we present a large-scale evaluation of various jailbreak attacks. We collect 17 representative jailbreak attacks, summarize their features, and establish a novel jailbreak attack taxonomy. Then we conduct comprehensive measurement and ablation studies across nine aligned LLMs on 160 forbidden questions from 16 violation categories. Also, we test jailbreak attacks under eight advanced defenses. Based on our taxonomy and experiments, we identify some important patterns, such as heuristic-based attacks, which could achieve high attack success rates but are easy to mitigate by defenses. Our study offers valuable insights for future research on jailbreak attacks and defenses and serves as a benchmark tool for researchers and practitioners to evaluate them effectively.

pdf bib
Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media
Zhen Sun | Zongmin Zhang | Xinyue Shen | Ziyi Zhang | Yule Liu | Michael Backes | Yang Zhang | Xinlei He
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Social media platforms are experiencing a growing presence of AI-Generated Texts (AIGTs). However, the misuse of AIGTs could have profound implications for public opinion, such as spreading misinformation and manipulating narratives. Despite its importance, it remains unclear how prevalent AIGTs are on social media. To address this gap, this paper aims to quantify and monitor the AIGTs on online social media platforms. We first collect a dataset (SM-D) with around 2.4M posts from 3 major social media platforms: Medium, Quora, and Reddit. Then, we construct a diverse dataset (AIGTBench) to train and evaluate AIGT detectors. AIGTBench combines popular open-source datasets and our AIGT datasets generated from social media texts by 12 LLMs, serving as a benchmark for evaluating mainstream detectors. With this setup, we identify the best-performing detector (OSM-Det). We then apply OSM-Det to SM-D to track AIGTs across social media platforms from January 2022 to October 2024, using the AI Attribution Rate (AAR) as the metric. Specifically, Medium and Quora exhibit marked increases in AAR, rising from 1.77% to 37.03% and 2.06% to 38.95%, respectively. In contrast, Reddit shows slower growth, with AAR increasing from 1.31% to 2.45% over the same period. Our further analysis indicates that AIGTs on social media differ from human-written texts across several dimensions, including linguistic patterns, topic distributions, engagement levels, and the follower distribution of authors. We envision our analysis and findings on AIGTs in social media can shed light on future research in this domain.

pdf bib
A Self-Denoising Model for Robust Few-Shot Relation Extraction
Liang Zhang | Yang Zhang | Ziyao Lu | Fandong Meng | Jie Zhou | Jinsong Su
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The few-shot relation extraction (FSRE) aims at enhancing the model’s generalization to new relations with very few labeled instances (support instances). Most existing studies use prototype networks (ProtoNets) for FSRE and assume that the support set, adapting the model to new relations, only contains accurately labeled instances. However, this assumption is usually unrealistic, as even carefully-annotated datasets often contain mislabeled instances. Thus, it is essential to enhance the robustness of FSRE models to noisy labels in support set, but this issue remains unexplored. In this paper, we first conduct a preliminary study, revealing the high sensitivity of ProtoNets to such noisy labels. Meanwhile, we discover that fully leveraging mislabeled support instances is crucial for enhancing the model’s robustness. To do this, we propose a self-denoising model for FSRE, which can automatically correct noisy labels of support instances. Specifically, our model comprises two core components: 1) a label correction module (LCM), used to correct mislabeled support instances based on the distances between them in the embedding space, and 2) a relation classification module (RCM), designed to achieve more robust relation prediction using the corrected labels generated by the LCM. Moreover, we propose a feedback-based training strategy, which focuses on training LCM and RCM to synergistically handle noisy labels in support set. Experimental results on two public datasets show the effectiveness and robustness of our model. Notably, even in scenarios without noisy labels, our model significantly outperforms all competitive baselines.

pdf bib
Online Iterative Self-Alignment for Radiology Report Generation
Ting Xiao | Lei Shi | Yang Zhang | HaoFeng Yang | Zhe Wang | Chenjia Bai
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Radiology Report Generation (RRG) is an important research topic for relieving radiologists’ heavy workload. Existing RRG models mainly rely on supervised fine-tuning (SFT) based on different model architectures using data pairs of radiological images and corresponding radiologist-annotated reports. Recent research has shifted focus to post-training improvements, aligning RRG model outputs with human preferences using reinforcement learning (RL). However, the limited data coverage of high-quality annotated data poses risks of overfitting and generalization. This paper proposes a novel Online Iterative Self-Alignment (OISA) method for RRG that consists of four stages: self-generation of diverse data, self-evaluation for multi-objective preference data, self-alignment for multi-objective optimization and self-iteration for further improvement. Our approach allows for generating varied reports tailored to specific clinical objectives, enhancing the overall performance of the RRG model iteratively. Unlike existing methods, our framework significantly increases data quality and optimizes performance through iterative multi-objective optimization. Experimental results demonstrate that our method surpasses previous approaches, achieving state-of-the-art performance across multiple evaluation metrics.

pdf bib
Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration
Yang Zhang | Shixin Yang | Chenjia Bai | Fei Wu | Xiu Li | Zhen Wang | Xuelong Li
Findings of the Association for Computational Linguistics: ACL 2025

Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at https://read-llm.github.io/.

pdf bib
K-order Ranking Preference Optimization for Large Language Models
Shihao Cai | Chongming Gao | Yang Zhang | Wentao Shi | Jizhi Zhang | Keqin Bao | Qifan Wang | Fuli Feng
Findings of the Association for Computational Linguistics: ACL 2025

To adapt large language models (LLMs) to ranking tasks, existing list-wise methods, represented by list-wise Direct Preference Optimization (DPO), focus on optimizing partial-order or full-order list ranking consistency for LLMs to enhance their ranking abilities.However, we argue that optimizing top-K ranking consistency could be more appropriate for real-world applications. There are two main reasons: (1) users are typically concerned with only the top-K results, making top-K ranking more important, and (2) tail items often lack precise feedback, making top-K ranking more reliable. Based on this, we propose K-order Ranking Preference Optimization (KPO) by extending the DPO’s Plackett-Luce model to accommodate top-K rankings. Additionally, recognizing that the number of important items can vary across queries, we extend KPO to dynamically determine appropriate K for different samples and introduce a curriculum learning strategy to boost training efficiency. Extensive experiments demonstrate the effectiveness of KPO, highlighting its high sample efficiency and robustness to noise. The code is available at https://github.com/Lanyu0303/KPO.

pdf bib
Customizing In-context Learning for Dynamic Interest Adaption in LLM-based Recommendation
Keqin Bao | Ming Yan | Yang Zhang | Jizhi Zhang | Wenjie Wang | Fuli Feng | Xiangnan He
Findings of the Association for Computational Linguistics: ACL 2025

Frequently updating Large Language Model (LLM)-based recommender systems to adapt to dynamic user interests—as done for traditional ones—is impractical due to high training costs, even with acceleration methods. This work explores the possibility of adapting the model to dynamic user interests without any model-level updates via In-context Learning (ICL), which enables adaptation through few-shot examples within input prompts. While using recent user interactions as ICL demonstrations offers a potential solution for dynamic interest adaptation, existing LLM-based recommenders face critical limitations: recommendation-specific tuning often diminishes the model’s in-context learning ability, and the original LLM’s ICL lacks task-specific optimization for recommendations. To bridge this gap, we introduce RecICL, a framework that establishes recommendation-oriented in-context learning by structuring recent user interactions and current inputs into ICL formats. RecICL achieves dual objectives: (1) preserving fundamental ICL capabilities during recommendation adaptation and (2) dynamically capturing user preference evolution through the most recent interactions. Extensive experiments across multiple benchmarks demonstrate RecICL’s superior performance, achieving better results without model updates. Our implementation is publicly available at https://anonymous.4open.science/r/RecICL-8003.

pdf bib
Disentangling Reasoning Tokens and Boilerplate Tokens For Language Model Fine-tuning
Ziang Ye | Zhenru Zhang | Yang Zhang | Jianxin Ma | Junyang Lin | Fuli Feng
Findings of the Association for Computational Linguistics: ACL 2025

When using agent-task datasets to enhance agent capabilities for Large Language Models (LLMs), current methodologies often treat all tokens within a sample equally. However, we argue that tokens serving different roles—specifically, reasoning tokens versus boilerplate tokens (e.g., those governing output format)—differ significantly in importance and learning complexity, necessitating their disentanglement and distinct treatment. To address this, we propose a novel Shuffle-Aware Discriminator (SHAD) for adaptive token discrimination. SHAD classifies tokens by exploiting predictability differences observed after shuffling input-output combinations across samples: boilerplate tokens, due to their repetitive nature among samples, maintain predictability, whereas reasoning tokens do not. Using SHAD, we propose the Reasoning-highlighted Fine-Tuning (RFT) method, which adaptively emphasizes reasoning tokens during fine-tuning, yielding notable performance gains over common Supervised Fine-Tuning (SFT).

pdf bib
Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization
Yilun Qiu | Xiaoyan Zhao | Yang Zhang | Yimeng Bai | Wenjie Wang | Hong Cheng | Fuli Feng | Tat-Seng Chua
Findings of the Association for Computational Linguistics: ACL 2025

Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual’s historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.

pdf bib
PLAY2PROMPT: Zero-shot Tool Instruction Optimization for LLM Agents via Tool Play
Wei Fang | Yang Zhang | Kaizhi Qian | James R. Glass | Yada Zhu
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) are increasingly integrated with specialized external tools, yet many tasks demand zero-shot tool usage with minimal or noisy documentation. Existing solutions rely on manual rewriting or labeled data for validation, making them inapplicable in true zero-shot settings. To address these challenges, we propose PLAY2PROMPT, an automated framework that systematically “plays” with each tool to explore its input-output behaviors. Through this iterative trial-and-error process, PLAY2PROMPT refines tool documentation and generates usage examples without any labeled data. These examples not only guide LLM inference but also serve as validation to further enhance tool utilization. Extensive experiments on real-world tasks demonstrate that PLAY2PROMPT significantly improves zero-shot tool performance across both open and closed models, offering a scalable and effective solution for domain-specific tool integration.

pdf bib
A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation
Bairu Hou | Yang Zhang | Jacob Andreas | Shiyu Chang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We describe Belief Tree Propagation (BTProp), a probabilistic framework for LLM hallucination detection. To judge the truth of a statement, BTProp generates a belief tree by recursively expanding the initial statement into a set of logically related claims, then reasoning globally about the relationships between these claims. BTProp works by constructing a probabilistic model of the LM itself: it reasons jointly about logical relationships between claims and relationships between claim probabilities and LM factuality judgments via probabilistic inference in a “hidden Markov tree”. This method improves over state-of-the-art baselines by 3%-9% (evaluated by AUROC and AUC-PR) on multiple hallucination detection benchmarks.

pdf bib
Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools
Yilun Hao | Yongchao Chen | Yang Zhang | Chuchu Fan
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) struggle to directly generate correct plans for complex multi-constraint planning problems, even with self-verification and self-critique. For example, a U.S. domestic travel planning benchmark TravelPlanner was proposed in Xie et al. (2024), where the best LLM OpenAI o1-preview can only find viable travel plans with a 10% success rate given all needed information. In this work, we tackle this by proposing an LLM-based planning framework that formalizes and solves complex multi-constraint planning problems as constrained satisfiability problems, which are further consumed by sound and complete satisfiability solvers. We start with TravelPlanner as the primary use case and show that our framework achieves a success rate of 93.9% and is effective with diverse paraphrased prompts. More importantly, our framework has strong zero-shot generalizability, successfully handling unseen constraints in our newly created unseen international travel dataset and generalizing well to new fundamentally different domains. Moreover, when user input queries are infeasible, our framework can identify the unsatisfiable core, provide failure reasons, and offers personalized modification suggestions. We show that our framework can modify and solve for an average of 81.6% and 91.7% unsatisfiable queries from two datasets and prove with ablations that all key components of our framework are effective and necessary.

2024

pdf bib
Text-like Encoding of Collaborative Information in Large Language Models for Recommendation
Yang Zhang | Keqin Bao | Ming Yan | Wenjie Wang | Fuli Feng | Xiangnan He
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When adapting Large Language Models for Recommendation (LLMRec), it is crucial to integrate collaborative information. Existing methods achieve this by learning collaborative embeddings in LLMs’ latent space from scratch or by mapping from external models. However, they fail to represent the information in a text-like format, which may not align optimally with LLMs. To bridge this gap, we introduce BinLLM, a novel LLMRec method that seamlessly integrates collaborative information through text-like encoding. BinLLM converts collaborative embeddings from external models into binary sequences — a specific text format that LLMs can understand and operate on directly, facilitating the direct usage of collaborative information in text-like format by LLMs. Additionally, BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths. Extensive experiments validate that BinLLM introduces collaborative information in a manner better aligned with LLMs, resulting in enhanced performance. We release our code at https://github.com/zyang1580/BinLLM.

pdf bib
Are LLM-based Evaluators Confusing NLG Quality Criteria?
Xinyu Hu | Mingqi Gao | Sen Hu | Yang Zhang | Yicheng Chen | Teng Xu | Xiaojun Wan
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.

pdf bib
Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
Zhenrui Yue | Huimin Zeng | Lanyu Shang | Yifan Liu | Yang Zhang | Dong Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.

pdf bib
Investigating Layer Importance in Large Language Models
Yang Zhang | Yanfei Dong | Kenji Kawaguchi
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Large language models (LLMs) have gained increasing attention due to their prominent ability to understand and process texts. Nevertheless, LLMs largely remain opaque. The lack of understanding of LLMs has obstructed the deployment in safety-critical scenarios and hindered the development of better models. In this study, we advance the understanding of LLM by investigating the significance of individual layers in LLMs. We propose an efficient sampling method to faithfully evaluate the importance of layers using Shapley values, a widely used explanation framework in feature attribution and data valuation. In addition, we conduct layer ablation experiments to assess the performance degradation resulting from the exclusion of specific layers. Our findings reveal the existence of cornerstone layers, wherein certain early layers can exhibit a dominant contribution over others. Removing one cornerstone layer leads to a drastic collapse of the model performance, often reducing it to random guessing. Conversely, removing non-cornerstone layers results in only marginal performance changes. This study identifies cornerstone layers in LLMs and underscores their critical role for future research.

pdf bib
PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling
Yongchao Chen | Jacob Arkin | Yilun Hao | Yang Zhang | Nicholas Roy | Chuchu Fan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PROMST that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6%-29.3% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks.

pdf bib
Reconstruct Your Previous Conversations! Comprehensively Investigating Privacy Leakage Risks in Conversations with GPT Models
Junjie Chu | Zeyang Sha | Michael Backes | Yang Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Significant advancements have recently been made in large language models, represented by GPT models.Users frequently have multi-round private conversations with cloud-hosted GPT models for task optimization.Yet, this operational paradigm introduces additional attack surfaces, particularly in custom GPTs and hijacked chat sessions.In this paper, we introduce a straightforward yet potent Conversation Reconstruction Attack.This attack targets the contents of previous conversations between GPT models and benign users, i.e., the benign users’ input contents during their interaction with GPT models.The adversary could induce GPT models to leak such contents by querying them with designed malicious prompts.Our comprehensive examination of privacy risks during the interactions with GPT models under this attack reveals GPT-4’s considerable resilience.We present two advanced attacks targeting improved reconstruction of past conversations, demonstrating significant privacy leakage across all models under these advanced techniques.Evaluating various defense mechanisms, we find them ineffective against these attacks.Our findings highlight the ease with which privacy can be compromised in interactions with GPT models, urging the community to safeguard against potential abuses of these models’ capabilities.

pdf bib
Revisiting Who’s Harry Potter: Towards Targeted Unlearning from a Causal Intervention Perspective
Yujian Liu | Yang Zhang | Tommi Jaakkola | Shiyu Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This paper investigates Who’s Harry Potter (WHP), a pioneering yet insufficiently understood method for LLM unlearning. We explore it in two steps. First, we introduce a new task of LLM targeted unlearning, where given an unlearning target (e.g., a person) and some unlearning documents, we aim to unlearn only the information about the target, rather than everything in the unlearning documents. We further argue that a successful unlearning should satisfy criteria such as not outputting gibberish, not fabricating facts about the unlearning target, and not releasing factual information under jailbreak attacks. Second, we construct a causal intervention framework for targeted unlearning, where the knowledge of the unlearning target is modeled as a confounder between LLM input and output, and the unlearning process as a deconfounding process. This framework justifies and extends WHP, deriving a simple unlearning algorithm that includes WHP as a special case. Experiments on existing and new datasets show that our approach, without explicitly optimizing for the aforementioned criteria, achieves competitive performance in all of them.

pdf bib
Decoding Matters: Addressing Amplification Bias and Homogeneity Issue in Recommendations for Large Language Models
Keqin Bao | Jizhi Zhang | Yang Zhang | Xinyue Huo | Chong Chen | Fuli Feng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Adapting Large Language Models (LLMs) for recommendation requires careful consideration of the decoding process, given the inherent differences between generating items and natural language. Existing approaches often directly apply LLMs’ original decoding methods. However, we find these methods encounter significant challenges: 1) amplification bias—where standard length normalization inflates scores for items containing tokens with generation probabilities close to 1 (termed ghost tokens), and 2) homogeneity issue—generating multiple similar or repetitive items for a user. To tackle these challenges, we introduce a new decoding approach named Debiasing-Diversifying Decoding (D3). D3 disables length normalization for ghost tokens to alleviate amplification bias, and it incorporates a text-free assistant model to encourage tokens less frequently generated by LLMs for counteracting recommendation homogeneity. Extensive experiments on real-world datasets demonstrate the method’s effectiveness in enhancing accuracy and diversity.

pdf bib
ModSCAN: Measuring Stereotypical Bias in Large Vision-Language Models from Vision and Language Modalities
Yukun Jiang | Zheng Li | Xinyue Shen | Yugeng Liu | Michael Backes | Yang Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

pdf bib
Large Language Models Are Involuntary Truth-Tellers: Exploiting Fallacy Failure for Jailbreak Attacks
Yue Zhou | Henry Peng Zou | Barbara Di Eugenio | Yang Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We find that language models have difficulties generating fallacious and deceptive reasoning. When asked to generate deceptive outputs, language models tend to leak honest counterparts but believe them to be false. Exploiting this deficiency, we propose a jailbreak attack method that elicits an aligned language model for malicious output. Specifically, we query the model to generate a fallacious yet deceptively real procedure for the harmful behavior. Since a fallacious procedure is generally considered fake and thus harmless by LLMs, it helps bypass the safeguard mechanism. Yet the output is factually harmful since the LLM cannot fabricate fallacious solutions but proposes truthful ones. We evaluate our approach over five safety-aligned large language models, comparing four previous jailbreak methods, and show that our approach achieves competitive performance with more harmful outputs. We believe the findings could be extended beyond model safety, such as self-verification and hallucination.

pdf bib
The Death and Life of Great Prompts: Analyzing the Evolution of LLM Prompts from the Structural Perspective
Yihan Ma | Xinyue Shen | Yixin Wu | Boyang Zhang | Michael Backes | Yang Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Effective utilization of large language models (LLMs), such as ChatGPT, relies on the quality of input prompts. This paper explores prompt engineering, specifically focusing on the disparity between experimentally designed prompts and real-world “in-the-wild” prompts. We analyze 10,538 in-the-wild prompts collected from various platforms and develop a framework that decomposes the prompts into eight key components. Our analysis shows that and Requirement are the most prevalent two components. Roles specified in the prompts, along with their capabilities, have become increasingly varied over time, signifying a broader range of application scenarios for LLMs. However, from the response of GPT-4, there is a marginal improvement with a specified role, whereas leveraging less prevalent components such as Capability and Demonstration can result in a more satisfying response. Overall, our work sheds light on the essential components of in-the-wild prompts and the effectiveness of these components on the broader landscape of LLM prompt engineering, providing valuable guidelines for the LLM community to optimize high-quality prompts.

pdf bib
Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering
Lu Shi | Bin Qi | Jiarui Luo | Yang Zhang | Zhanzhao Liang | Zhaowei Gao | Wenke Deng | Lin Sun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle’s lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering. Aegis is specifically designed to support complex functional safety tasks within the automotive sector. It is tailored to perform Hazard Analysis and Risk Assessment (HARA), document Functional Safety Requirements (FSR), and plan test cases for Automatic Emergency Braking (AEB) systems. The most advanced version, Aegis-Max, leverages Retrieval-Augmented Generation (RAG) and reflective mechanisms to enhance its capability in managing complex, knowledge-intensive tasks. Additionally, targeted prompt refinement by professional functional safety practitioners can significantly optimize Aegis’s performance in the functional safety domain. This paper demonstrates the potential of Aegis to improve the efficiency and effectiveness of functional safety processes in automotive engineering.

pdf bib
Composite Backdoor Attacks Against Large Language Models
Hai Huang | Zhengyu Zhao | Michael Backes | Yun Shen | Yang Zhang
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models (LLMs) have demonstrated superior performance compared to previous methods on various tasks, and often serve as the foundation models for many researches and services. However, the untrustworthy third-party LLMs may covertly introduce vulnerabilities for downstream tasks. In this paper, we explore the vulnerability of LLMs through the lens of backdoor attacks. Different from existing backdoor attacks against LLMs, ours scatters multiple trigger keys in different prompt components. Such a Composite Backdoor Attack (CBA) is shown to be stealthier than implanting the same multiple trigger keys in only a single component. CBA ensures that the backdoor is activated only when all trigger keys appear. Our experiments demonstrate that CBA is effective in both natural language processing (NLP) and multimodal tasks. For instance, with 3% poisoning samples against the LLaMA-7B model on the Emotion dataset, our attack achieves a 100% Attack Success Rate (ASR) with a False Triggered Rate (FTR) below 2.06% and negligible model accuracy degradation. Our work highlights the necessity of increased security research on the trustworthiness of foundation LLMs.

pdf bib
Fair Federated Learning with Biased Vision-Language Models
Huimin Zeng | Zhenrui Yue | Yang Zhang | Lanyu Shang | Dong Wang
Findings of the Association for Computational Linguistics: ACL 2024

Existing literature that integrates CLIP into federated learning (FL) largely ignores the inherent group unfairness within CLIP and its ethical implications on FL applications. Furthermore, such CLIP bias may be amplified in FL, due to the unique issue of data heterogeneity across clients. However, in identity-sensitive FL applications, model fairness (i.e., group fairness) is imperative for model development. Therefore, this work explores a critical question ignored by the existing literature: how can we build a fair FL framework using biased pre-trained VLMs (e.g., CLIP)? To address this problem, we propose a fairness-aware adaptation framework tailored for VLM (e.g., CLIP) in the context of FL, named Fair Federated Deep Visiual Prompting or FF-DVP. As implied by its name, trains a fair FL model with fairness-aware deep visual prompting (DVP). Moreover, incorporates modality-fused classification heads to learn client-specific knowledge and fairness constraints. These modules explicitly addresses a unique bias in FL, namely the bias triggered by data heterogeneity. We show that can be readily extended to prevailing parameter-efficient fine-tuning methods (e.g., adapter or LoRA) for debiasing. To the best of our knowledge, is the first to leverage biased VLMs for building fair FL frameworks. Extensive results on human face attribute recognition (FAR) applications suggest that effectively improves model fairness and training convergence, outperforming state-of-the-art baselines.

pdf bib
Evaluating Mathematical Reasoning of Large Language Models: A Focus on Error Identification and Correction
Xiaoyuan Li | Wenjie Wang | Moxin Li | Junrong Guo | Yang Zhang | Fuli Feng
Findings of the Association for Computational Linguistics: ACL 2024

The rapid advancement of Large Language Models (LLMs) in the realm of mathematical reasoning necessitates comprehensive evaluations to gauge progress and inspire future directions. Existing assessments predominantly focus on problem-solving from the examinee perspective, overlooking a dual perspective of examiner regarding error identification and correction.From the examiner perspective, we define four evaluation tasks for error identification and correction along with a new dataset with annotated error types and steps. We also design diverse prompts to thoroughly evaluate eleven representative LLMs. Our principal findings indicate that GPT-4 outperforms all models, while open-source model LLaMA-2-7B demonstrates comparable abilities to closed-source models GPT-3.5 and Gemini Pro.Notably, calculation error proves the most challenging error type. Moreover, prompting LLMs with the error types can improve the average correction accuracy by 47.9%. These results reveal potential directions for developing the mathematical reasoning abilities of LLMs.Our code and dataset is available on https://github.com/LittleCirc1e/EIC.

pdf bib
Paraphrase and Solve: Exploring and Exploiting the Impact of Surface Form on Mathematical Reasoning in Large Language Models
Yue Zhou | Yada Zhu | Diego Antognini | Yoon Kim | Yang Zhang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

This paper studies the relationship between the surface form of a mathematical problem and its solvability by large language models. We find that subtle alterations in the surface form can significantly impact the answer distribution and the solve rate, exposing the language model’s lack of robustness and sensitivity to the surface form in reasoning through complex problems. To improve mathematical reasoning performance, we propose Self-Consistency-over-Paraphrases (SCoP), which diversifies reasoning paths from specific surface forms of the problem. We evaluate our approach on four mathematics reasoning benchmarks over three large language models and show that SCoP improves mathematical reasoning performance over vanilla self-consistency, particularly for problems initially deemed unsolvable. Finally, we provide additional experiments and discussion regarding problem difficulty and surface forms, including cross-model difficulty agreement and paraphrasing transferability, and Variance of Variations (VOV) for language model evaluation.

pdf bib
Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation
Zhenrui Yue | Huimin Zeng | Yimeng Lu | Lanyu Shang | Yang Zhang | Dong Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

pdf bib
Advancing the Robustness of Large Language Models through Self-Denoised Smoothing
Jiabao Ji | Bairu Hou | Zhen Zhang | Guanhua Zhang | Wenqi Fan | Qing Li | Yang Zhang | Gaowen Liu | Sijia Liu | Shiyu Chang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Although large language models (LLMs) have achieved significant success, their vulnerability to adversarial perturbations, including recent jailbreak attacks, has raised considerable concerns. However, the increasing size of these models and their limited access make improving their robustness a challenging task. Among various defense strategies, randomized smoothing has shown great potential for LLMs, as it does not require full access to the model’s parameters or fine-tuning via adversarial training. However, randomized smoothing involves adding noise to the input before model prediction, and the final model’s robustness largely depends on the model’s performance on these noise-corrupted data. Its effectiveness is often limited by the model’s sub-optimal performance on noisy data. To address this issue, we propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions. We call this procedure self-denoised smoothing. Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility. Our experimental results indicate that our method surpasses existing methods in both empirical and certified robustness in defending against adversarial attacks for both downstream tasks and human alignments (i.e., jailbreak attacks). Our code is publicly available at https://github.com/UCSB-NLP-Chang/SelfDenoise.

2023

pdf bib
MetaAdapt: Domain Adaptive Few-Shot Misinformation Detection via Meta Learning
Zhenrui Yue | Huimin Zeng | Yang Zhang | Lanyu Shang | Dong Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With emerging topics (e.g., COVID-19) on social media as a source for the spreading misinformation, overcoming the distributional shifts between the original training domain (i.e., source domain) and such target domains remains a non-trivial task for misinformation detection. This presents an elusive challenge for early-stage misinformation detection, where a good amount of data and annotations from the target domain is not available for training. To address the data scarcity issue, we propose MetaAdapt, a meta learning based approach for domain adaptive few-shot misinformation detection. MetaAdapt leverages limited target examples to provide feedback and guide the knowledge transfer from the source to the target domain (i.e., learn to adapt). In particular, we train the initial model with multiple source tasks and compute their similarity scores to the meta task. Based on the similarity scores, we rescale the meta gradients to adaptively learn from the source tasks. As such, MetaAdapt can learn how to adapt the misinformation detection model and exploit the source data for improved performance in the target domain. To demonstrate the efficiency and effectiveness of our method, we perform extensive experiments to compare MetaAdapt with state-of-the-art baselines and large language models (LLMs) such as LLaMA, where MetaAdapt achieves better performance in domain adaptive few-shot misinformation detection with substantially reduced parameters on real-world datasets.

pdf bib
NOTABLE: Transferable Backdoor Attacks Against Prompt-based NLP Models
Kai Mei | Zheng Li | Zhenting Wang | Yang Zhang | Shiqing Ma
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompt-based learning is vulnerable to backdoor attacks. Existing backdoor attacks against prompt-based models consider injecting backdoors into the entire embedding layers or word embedding vectors. Such attacks can be easily affected by retraining on downstream tasks and with different prompting strategies, limiting the transferability of backdoor attacks. In this work, we propose transferable backdoor attacks against prompt-based models, called NOTABLE, which is independent of downstream tasks and prompting strategies. Specifically, NOTABLE injects backdoors into the encoders of PLMs by utilizing an adaptive verbalizer to bind triggers to specific words (i.e., anchors). It activates the backdoor by pasting input with triggers to reach adversary-desired anchors, achieving independence from downstream tasks and prompting strategies. We conduct experiments on six NLP tasks, three popular models, and three prompting strategies. Empirical results show that NOTABLE achieves superior attack performance (i.e., attack success rate over 90% on all the datasets), and outperforms two state-of-the-art baselines. Evaluations on three defenses show the robustness of NOTABLE. Our code can be found at https://github.com/RU-System-Software-and-Security/Notable.

pdf bib
NL2TL: Transforming Natural Languages to Temporal Logics using Large Language Models
Yongchao Chen | Rujul Gandhi | Yang Zhang | Chuchu Fan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Temporal Logic (TL) can be used to rigorously specify complex high-level specification for systems in many engineering applications. The translation between natural language (NL) and TL has been under-explored due to the lack of dataset and generalizable model across different application domains. In this paper, we propose an accurate and generalizable transformation framework of English instructions from NL to TL, exploring the use of Large Language Models (LLMs) at multiple stages. Our contributions are twofold. First, we develop a framework to create a dataset of NL-TL pairs combining LLMs and human annotation. We publish a dataset with 23K NL-TL pairs. Then, we finetune T5 models on the lifted versions (i.e., the specific Atomic Propositions (AP) are hidden) of the NL and TL. The enhanced generalizability originates from two aspects: 1) Usage of lifted NL-TL characterizes common logical structures, without constraints of specific domains. 2) Application of LLMs in dataset creation largely enhances corpus richness. We test the generalization of trained models on five varied domains. To achieve full NL-TL transformation, we either combine the lifted model with AP recognition task or do the further finetuning on each specific domain. During the further finetuning, our model achieves higher accuracy (> 95%) using only <10% training data, compared with the baseline sequence to sequence (Seq2Seq) model.

2022

pdf bib
Dual Attention Model for Citation Recommendation with Analyses on Explainability of Attention Mechanisms and Qualitative Experiments
Yang Zhang | Qiang Ma
Computational Linguistics, Volume 48, Issue 2 - June 2022

Based on an exponentially increasing number of academic articles, discovering and citing comprehensive and appropriate resources have become non-trivial tasks. Conventional citation recommendation methods suffer from severe information losses. For example, they do not consider the section header of the paper that the author is writing and for which they need to find a citation, the relatedness between the words in the local context (the text span that describes a citation), or the importance of each word from the local context. These shortcomings make such methods insufficient for recommending adequate citations to academic manuscripts. In this study, we propose a novel embedding-based neural network called dual attention model for citation recommendation (DACR) to recommend citations during manuscript preparation. Our method adapts the embedding of three semantic pieces of information: words in the local context, structural contexts,1 and the section on which the author is working. A neural network model is designed to maximize the similarity between the embedding of the three inputs (local context words, section headers, and structural contexts) and the target citation appearing in the context. The core of the neural network model comprises self-attention and additive attention; the former aims to capture the relatedness between the contextual words and structural context, and the latter aims to learn their importance. Recommendation experiments on real-world datasets demonstrate the effectiveness of the proposed approach. To seek explainability on DACR, particularly the two attention mechanisms, the learned weights from them are investigated to determine how the attention mechanisms interpret “relatedness” and “importance” through the learned weights. In addition, qualitative analyses were conducted to testify that DACR could find necessary citations that were not noticed by the authors in the past due to the limitations of the keyword-based searching.

pdf bib
DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings
Yung-Sung Chuang | Rumen Dangovski | Hongyin Luo | Yang Zhang | Shiyu Chang | Marin Soljacic | Shang-Wen Li | Scott Yih | Yoon Kim | James Glass
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings. DiffCSE learns sentence embeddings that are sensitive to the difference between the original sentence and an edited sentence, where the edited sentence is obtained by stochastically masking out the original sentence and then sampling from a masked language model. We show that DiffSCE is an instance of equivariant contrastive learning, which generalizes contrastive learning and learns representations that are insensitive to certain types of augmentations and sensitive to other “harmful” types of augmentations. Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods, outperforming unsupervised SimCSE by 2.3 absolute points on semantic textual similarity tasks.

2021

pdf bib
Frustratingly Simple Few-Shot Slot Tagging
Jianqiang Ma | Zeyu Yan | Chang Li | Yang Zhang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
SQL Generation via Machine Reading Comprehension
Zeyu Yan | Jianqiang Ma | Yang Zhang | Jianping Shen
Proceedings of the 28th International Conference on Computational Linguistics

Text-to-SQL systems offers natural language interfaces to databases, which can automatically generates SQL queries given natural language questions. On the WikiSQL benchmark, state-of- the-art text-to-SQL systems typically take a slot-filling approach by building several specialized models for each type of slot. Despite being effective, such modularized systems are complex and also fall short in jointly learning for different slots. To solve these problems, this paper proposes a novel approach that formulates the task as a question answering problem, where different slots are predicted by a unified machine reading comprehension (MRC) model. For this purpose, we use a BERT-based MRC model, which can also benefit from intermediate training on other MRC datasets. The proposed method can achieve competitive results on WikiSQL, suggesting it being a promising direction for text-to-SQL.

pdf bib
Dual Attention Model for Citation Recommendation
Yang Zhang | Qiang Ma
Proceedings of the 28th International Conference on Computational Linguistics

Based on an exponentially increasing number of academic articles, discovering and citing comprehensive and appropriate resources has become a non-trivial task. Conventional citation recommender methods suffer from severe information loss. For example, they do not consider the section of the paper that the user is writing and for which they need to find a citation, the relatedness between the words in the local context (the text span that describes a citation), or the importance on each word from the local context. These shortcomings make such methods insufficient for recommending adequate citations to academic manuscripts. In this study, we propose a novel embedding-based neural network called “dual attention model for citation recommendation (DACR)” to recommend citations during manuscript preparation. Our method adapts embedding of three semantic information: words in the local context, structural contexts, and the section on which a user is working. A neural network model is designed to maximize the similarity between the embedding of the three input (local context words, section and structural contexts) and the target citation appearing in the context. The core of the neural network model is composed of self-attention and additive attention, where the former aims to capture the relatedness between the contextual words and structural context, and the latter aims to learn the importance of them. The experiments on real-world datasets demonstrate the effectiveness of the proposed approach.

pdf bib
FASTMATCH: Accelerating the Inference of BERT-based Text Matching
Shuai Pang | Jianqiang Ma | Zeyu Yan | Yang Zhang | Jianping Shen
Proceedings of the 28th International Conference on Computational Linguistics

Recently, pre-trained language models such as BERT have shown state-of-the-art accuracies in text matching. When being applied to IR (or QA), the BERT-based matching models need to online calculate the representations and interactions for all query-candidate pairs. The high inference cost has prohibited the deployments of BERT-based matching models in many practical applications. To address this issue, we propose a novel BERT-based text matching model, in which the representations and the interactions are decoupled. Then, the representations of the candidates can be calculated and stored offline, and directly retrieved during the online matching phase. To conduct the interactions and generate final matching scores, a lightweight attention network is designed. Experiments based on several large scale text matching datasets show that the proposed model, called FASTMATCH, can achieve up to 100X speed-up to BERT and RoBERTa at the online matching phase, while keeping more up to 98.7% of the performance.

pdf bib
BioMegatron: Larger Biomedical Domain Language Model
Hoo-Chang Shin | Yang Zhang | Evelina Bakhturina | Raul Puri | Mostofa Patwary | Mohammad Shoeybi | Raghav Mani
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing. We empirically study and evaluate several factors that can affect performance on domain language applications, such as the sub-word vocabulary set, model size, pre-training corpus, and domain transfer. We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus, contributing to our understanding of domain language model applications. We demonstrate noticeable improvements over the previous state-of-the-art (SOTA) on standard biomedical NLP benchmarks of question answering, named entity recognition, and relation extraction. Code and checkpoints to reproduce our experiments are available at [github.com/NVIDIA/NeMo].

pdf bib
Mention Extraction and Linking for SQL Query Generation
Jianqiang Ma | Zeyu Yan | Shuai Pang | Yang Zhang | Jianping Shen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

On the WikiSQL benchmark, state-of-the-art text-to-SQL systems typically take a slot- filling approach by building several dedicated models for each type of slots. Such modularized systems are not only complex but also of limited capacity for capturing inter-dependencies among SQL clauses. To solve these problems, this paper proposes a novel extraction-linking approach, where a unified extractor recognizes all types of slot mentions appearing in the question sentence before a linker maps the recognized columns to the table schema to generate executable SQL queries. Trained with automatically generated annotations, the proposed method achieves the first place on the WikiSQL benchmark.

2019

pdf bib
Rethinking Cooperative Rationalization: Introspective Extraction and Complement Control
Mo Yu | Shiyu Chang | Yang Zhang | Tommi Jaakkola
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Selective rationalization has become a common mechanism to ensure that predictive models reveal how they use any available features. The selection may be soft or hard, and identifies a subset of input features relevant for prediction. The setup can be viewed as a co-operate game between the selector (aka rationale generator) and the predictor making use of only the selected features. The co-operative setting may, however, be compromised for two reasons. First, the generator typically has no direct access to the outcome it aims to justify, resulting in poor performance. Second, there’s typically no control exerted on the information left outside the selection. We revise the overall co-operative framework to address these challenges. We introduce an introspective model which explicitly predicts and incorporates the outcome into the selection process. Moreover, we explicitly control the rationale complement via an adversary so as not to leave any useful information out of the selection. We show that the two complementary mechanisms maintain both high predictive accuracy and lead to comprehensive rationales.

2018

pdf bib
Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification
Jianyu Zhao | Zhiqiang Zhan | Qichuan Yang | Yang Zhang | Changjian Hu | Zhensheng Li | Liuxin Zhang | Zhiqiang He
Proceedings of the 27th International Conference on Computational Linguistics

Representation learning is a key issue for most Natural Language Processing (NLP) tasks. Most existing representation models either learn little structure information or just rely on pre-defined structures, leading to degradation of performance and generalization capability. This paper focuses on learning both local semantic and global structure representations for text classification. In detail, we propose a novel Sandwich Neural Network (SNN) to learn semantic and structure representations automatically without relying on parsers. More importantly, semantic and structure information contribute unequally to the text representation at corpus and instance level. To solve the fusion problem, we propose two strategies: Adaptive Learning Sandwich Neural Network (AL-SNN) and Self-Attention Sandwich Neural Network (SA-SNN). The former learns the weights at corpus level, and the latter further combines attention mechanism to assign the weights at instance level. Experimental results demonstrate that our approach achieves competitive performance on several text classification tasks, including sentiment analysis, question type classification and subjectivity classification. Specifically, the accuracies are MR (82.1%), SST-5 (50.4%), TREC (96%) and SUBJ (93.9%).

2017

pdf bib
Sentiment Lexicon Expansion Based on Neural PU Learning, Double Dictionary Lookup, and Polarity Association
Yasheng Wang | Yang Zhang | Bing Liu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Although many sentiment lexicons in different languages exist, most are not comprehensive. In a recent sentiment analysis application, we used a large Chinese sentiment lexicon and found that it missed a large number of sentiment words in social media. This prompted us to make a new attempt to study sentiment lexicon expansion. This paper first poses the problem as a PU learning problem, which is a new formulation. It then proposes a new PU learning method suitable for our problem using a neural network. The results are enhanced further with a new dictionary-based technique and a novel polarity classification technique. Experimental results show that the proposed approach outperforms baseline methods greatly.

2016

pdf bib
Integrating Encyclopedic Knowledge into Neural Language Models
Yang Zhang | Jan Niehues | Alexander Waibel
Proceedings of the 13th International Conference on Spoken Language Translation

Neural models have recently shown big improvements in the performance of phrase-based machine translation. Recurrent language models, in particular, have been a great success due to their ability to model arbitrary long context. In this work, we integrate global semantic information extracted from large encyclopedic sources into neural network language models. We integrate semantic word classes extracted from Wikipedia and sentence level topic information into a recurrent neural network-based language model. The new resulting models exhibit great potential in alleviating data sparsity problems with the additional knowledge provided. This approach of integrating global information is not restricted to language modeling but can also be easily applied to any model that profits from context or further data resources, e.g. neural machine translation. Using this model has improved rescoring quality of a state-of-the-art phrase-based translation system by 0.84 BLEU points. We performed experiments on two language pairs.

2015

pdf bib
Clustering Sentences with Density Peaks for Multi-document Summarization
Yang Zhang | Yunqing Xia | Yi Liu | Wenmin Wang
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2011

pdf bib
Why Press Backspace? Understanding User Input Behaviors in Chinese Pinyin Input Method
Yabin Zheng | Lixing Xie | Zhiyuan Liu | Maosong Sun | Yang Zhang | Liyun Ru
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2006

pdf bib
Exploring Distributional Similarity Based Models for Query Spelling Correction
Mu Li | Muhua Zhu | Yang Zhang | Ming Zhou
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

pdf bib
Discriminative Reranking for Spelling Correction
Yang Zhang | Pilian He | Wei Xiang | Mu Li
Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation

Search
Co-authors
Fix author