Traditional supervised fine-tuning (SFT) strategies for sequence-to-sequence tasks often train models to directly generate the target output. Recent work has shown that guiding models with intermediate steps—such as keywords, outlines, or reasoning chains—can significantly improve performance, coherence, and interpretability. However, these methods often depend on predefined intermediate formats and annotated data, limiting their scalability and generalizability. In this work, we introduce a task-agnostic framework that enables models to generate intermediate “warmup” sequences. These warmup sequences, serving as an initial state for subsequent generation, are optimized to enhance the probability of generating the target sequence without relying on external supervision or human-designed structures. Drawing inspiration from reinforcement learning principles, our method iteratively refines these intermediate steps to maximize their contribution to the final output, similar to reward-driven optimization in reinforcement learning with human feedback. Experimental results across tasks such as translation, summarization, and multi-choice question answering for logical reasoning show that our approach outperforms traditional SFT methods, and offers a scalable and flexible solution for sequence-to-sequence tasks.
Comprehensively understanding and accurately predicting the performance of large language models across diverse downstream tasks has emerged as a pivotal challenge in NLP research. The pioneering scaling law on downstream works demonstrated intrinsic similarities within model families and utilized such similarities for performance prediction. However, they tend to overlook the similarities between model families and only consider design factors listed in the original scaling law. To overcome these limitations, we introduce a novel framework, Collaborative Performance Prediction (CPP), which significantly enhances prediction accuracy by leveraging the historical performance of various models on downstream tasks and other design factors for both model and task. We also collect a collaborative data sourced from online platforms containing both historical performance and additional design factors. With the support of the collaborative data, CPP not only surpasses traditional scaling laws in predicting the performance of scaled LLMs but also facilitates a detailed analysis of factor importance, an area previously overlooked.
Recent advances in machine learning have significantly impacted the field of information extraction, with Language Models (LMs) playing a pivotal role in extracting structured information from unstructured text. Prior works typically represent information extraction as triplet-centric and use classical metrics such as precision and recall for evaluation. We reformulate the task to be entity-centric, enabling the use of diverse metrics that can provide more insights from various perspectives. We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP (AESOP) metric, designed to appropriately assess model performance. Later, we introduce a new Multistage Structured Entity Extraction (MuSEE) model that harnesses the power of LMs for enhanced effectiveness and efficiency by decomposing the extraction task into multiple stages. Quantitative and human side-by-side evaluations confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction. Our source code is available at https://github.com/microsoft/Structured-Entity-Extraction.