Xu Liangyu


2025

pdf bib
FRAME: Boosting LLMs with A Four-Quadrant Multi-Stage Pretraining Strategy
Xuemiao Zhang | Feiyu Duan | Xu Liangyu | Yongwei Zhou | Sirui Wang | Rongxiang Weng | Jingang Wang | Xunliang Cai
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have significantly advanced human language understanding and generation, with pretraining data quality and organization being crucial to their performance. Multi-stage pretraining is a promising approach, but existing methods often lack quantitative criteria for data partitioning and instead rely on intuitive heuristics. In this paper, we propose the novel Four-quadRAnt Multi-stage prEtraining strategy (FRAME), guided by the established principle of organizing the pretraining process into four stages to achieve significant loss reductions four times. This principle is grounded in two key findings: first, training on high Perplexity (PPL) data followed by low PPL data, and second, training on low PPL difference (PD) data followed by high PD data, both causing the loss to drop significantly twice and performance enhancements. By partitioning data into four quadrants and strategically organizing them, FRAME achieves a remarkable 16.8% average improvement over random across MMLU and CMMLU for the 3B model, effectively boosting LLM performance.

pdf bib
Preference Curriculum: LLMs Should Always Be Pretrained on Their Preferred Data
Xuemiao Zhang | Xu Liangyu | Feiyu Duan | Yongwei Zhou | Sirui Wang | Rongxiang Weng | Jingang Wang | Xunliang Cai
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) generally utilize a consistent data distribution throughout the pretraining process. However, as the model’s capability improves, it is intuitive that its data preferences dynamically change, indicating the need for pretraining with different data at various training stages. To achieve it, we propose the Perplexity Difference (PD) based Preference Curriculum learning (PDPC) framework, which always perceives and uses the data preferred by LLMs to train and boost them. First, we introduce the PD metric to quantify the difference in how challenging a sample is for weak versus strong models. Samples with high PD are more challenging for weak models to learn and are more suitable to be arranged in the later stage of pretraining. Second, we propose the preference function to approximate and predict the data preference of the LLM at any training step, so as to complete the arrangement of the dataset offline and ensure continuous training without interruption. Experimental results on 1.3B and 3B models demonstrate that PDPC significantly surpasses baselines. Notably, the 3B model trained on 1T tokens achieves an increased average accuracy of over 8.1% across MMLU and CMMLU.