Xin Yang


2025

pdf bib
MANBench: Is Your Multimodal Model Smarter than Human?
Han Zhou | Qitong Xu | Yiheng Dong | Xin Yang
Findings of the Association for Computational Linguistics: ACL 2025

The rapid advancement of Multimodal Large Language Models (MLLMs) has ignited discussions regarding their potential to surpass human performance in multimodal tasks. In response, we introduce MANBench (Multimodal Ability Norms Benchmark), a bilingual benchmark (English and Chinese) comprising 1,314 questions across nine tasks, spanning knowledge-based and non-knowledge-based domains. MANBench emphasizes intuitive reasoning, seamless cross-modal integration, and real-world complexity, providing a rigorous evaluation framework.Through extensive human experiments involving diverse participants, we compared human performance against state-of-the-art MLLMs. The results indicate that while MLLMs excel in tasks like Knowledge and Text-Image Understanding, they struggle with deeper cross-modal reasoning tasks such as Transmorphic Understanding, Image Consistency, and Multi-image Understanding. Moreover, both humans and MLLMs face challenges in highly complex tasks like Puzzles and Spatial Imagination.MANBench highlights the strengths and limitations of MLLMs, revealing that even advanced models fall short of achieving human-level performance across many domains. We hope MANBench will inspire efforts to bridge the gap between MLLMs and human multimodal capabilities. The code and dataset are available at https://github.com/micdz/MANBench/.

2023

pdf bib
EARA: Improving Biomedical Semantic Textual Similarity with Entity-Aligned Attention and Retrieval Augmentation
Ying Xiong | Xin Yang | Linjing Liu | Ka-Chun Wong | Qingcai Chen | Yang Xiang | Buzhou Tang
Findings of the Association for Computational Linguistics: EMNLP 2023

Measuring Semantic Textual Similarity (STS) is a fundamental task in biomedical text processing, which aims at quantifying the similarity between two input biomedical sentences. Unfortunately, the STS datasets in the biomedical domain are relatively smaller but more complex in semantics than common domain, often leading to overfitting issues and insufficient text representation even based on Pre-trained Language Models (PLMs) due to too many biomedical entities. In this paper, we propose EARA, an entity-aligned, attention-based and retrieval-augmented PLMs. Our proposed EARA first aligns the same type of fine-grained entity information in each sentence pair with an entity alignment matrix. Then, EARA regularizes the attention mechanism with an entity alignment matrix with an auxiliary loss. Finally, we add a retrieval module that retrieves similar instances to expand the scope of entity pairs and improve the model’s generalization. The comprehensive experiments reflect that EARA can achieve state-of-the-art performance on both in-domain and out-of-domain datasets. Source code is available.