This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models (LLMs) exhibit impressive capabilities in In-Context Learning (ICL) but are prone to label bias—an undesirable tendency to favor certain answers. Existing calibration methods mitigate bias by leveraging in-domain data, yet such data is often unavailable in real-world scenarios. To address this limitation, we propose SDC (Synthetic Data Calibration), a simple-yet-effective approach that generates synthetic in-domain data from a few in-context demonstrations and utilizes it for calibration. By approximating the benefits of real in-domain data, SDC effectively reduces label bias without requiring access to actual domain-specific inputs. Experimental evaluations on 279 classification and multiple-choice tasks from the Super-NaturalInstructions benchmark. The results show that SDC significantly reduces label bias, achieving an average Bias Score reduction of 57.5%, and outperforming all competitive baselines. Moreover, when combined with Leave-One-Out Calibration (LOOC), further improves performance, underscoring its effectiveness and generalizability in enhancing the reliability of LLMs.
Effective information retrieval (IR) in settings with limited training data, particularly for complex queries, remains a challenging task. This paper introduces IR2, Information Regularization for Information Retrieval, a technique for reducing overfitting during synthetic data generation. This approach, representing a novel application of regularization techniques in synthetic data creation for IR, is tested on three recent IR tasks characterized by complex queries: DORIS-MAE, ArguAna, and WhatsThatBook. Experimental results indicate that our regularization techniques not only outperform previous synthetic query generation methods on the tasks considered but also reduce cost by up to 50%. Furthermore, this paper categorizes and explores three regularization methods at different stages of the query synthesis pipeline—input, prompt, and output—each offering varying degrees of performance improvement compared to models where no regularization is applied. This provides a systematic approach for optimizing synthetic data generation in data-limited, complex-query IR scenarios. All code, prompts and synthetic data are available at https://github.com/Info-Regularization/Information-Regularization.
As commonly-used methods for debiasing natural language understanding (NLU) models, dataset refinement approaches heavily rely on manual data analysis, and thus maybe unable to cover all the potential biased features. In this paper, we propose IBADR, an Iterative Bias-Aware Dataset Refinement framework, which debiases NLU models without predefining biased features. We maintain an iteratively expanded sample pool. Specifically, at each iteration, we first train a shallow model to quantify the bias degree of samples in the pool. Then, we pair each sample with a bias indicator representing its bias degree, and use these extended samples to train a sample generator. In this way, this generator can effectively learn the correspondence relationship between bias indicators and samples. Furthermore, we employ the generator to produce pseudo samples with fewer biased features by feeding specific bias indicators. Finally, we incorporate the generated pseudo samples into the pool. Experimental results and in-depth analyses on two NLU tasks show that IBADR not only significantly outperforms existing dataset refinement approaches, achieving SOTA, but also is compatible with model-centric methods.
Simile recognition involves two subtasks: simile sentence classification that discriminates whether a sentence contains simile, and simile component extraction that locates the corresponding objects (i.e., tenors and vehicles).Recent work ignores features other than surface strings and suffers from the data hunger issue.We explore expressive features for this task to help achieve more effective data utilization.In particular, we study two types of features: 1) input-side features that include POS tags, dependency trees and word definitions, and 2) decoding features that capture the interdependence among various decoding decisions.We further construct a model named HGSR, which merges the input-side features as a heterogeneous graph and leverages decoding features via distillation.Experiments show that HGSR significantly outperforms the current state-of-the-art systems and carefully designed baselines, verifying the effectiveness of introduced features. We will release our code upon paper acceptance.