This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
As large language models are increasingly utilized in real-world applications, guarantees of task-specific metrics are essential for their reliable deployment. Previous studies have introduced various criteria of conformal uncertainty grounded in split conformal prediction, which offer user-specified correctness coverage. However, existing frameworks often fail to identify uncertainty data outliers that violate the exchangeability assumption, leading to unbounded miscoverage rates and unactionable prediction sets. In this paper, we propose a novel approach termed Selective Conformal Uncertainty (SConU), which, for the first time, implements significance tests, by developing two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level. Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions. Furthermore, we comprehensively analyze the components of the conformal procedures, aiming to approximate conditional coverage, particularly in high-stakes question-answering tasks.
Although people are impressed by the content generation skills of large language models, the use of LLMs, such as ChatGPT, is limited by the domain grounding of the content. The correctness and groundedness of the generated content need to be based on a verified context, such as results from Retrieval-Augmented Generation (RAG). One important issue when adapting LLMs to a customized domain is that the generated responses are often incomplete, or the additions are not verified and may even be hallucinated. Prior studies on hallucination detection have focused on evaluation metrics, which are not easily adaptable to dynamic domains and can be vulnerable to attacks like jail-breaking. In this work, we propose 1) a post-processing algorithm of leveraging knowledge triplets in RAG context to correct hallucinations and 2) a dual-decoder model that fuses RAG context to guide the generation process.
Uncertainty quantification (UQ) in natural language generation (NLG) tasks remains an open challenge, exacerbated by the closed-source nature of the latest large language models (LLMs). This study investigates applying conformal prediction (CP), which can transform any heuristic uncertainty notion into rigorous prediction sets, to black-box LLMs in open-ended NLG tasks. We introduce a novel uncertainty measure based on self-consistency theory, and then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm. Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods. Furthermore, we achieve strict control over the correctness coverage rate utilizing 7 popular LLMs on 4 free-form NLG datasets, spanning general-purpose and medical scenarios. Additionally, the calibrated prediction sets with small size further highlights the efficiency of our method in providing trustworthy guarantees for practical open-ended NLG applications.
In this paper, we model the document revision detection problem as a minimum cost branching problem that relies on computing document distances. Furthermore, we propose two new document distance measures, word vector-based Dynamic Time Warping (wDTW) and word vector-based Tree Edit Distance (wTED). Our revision detection system is designed for a large scale corpus and implemented in Apache Spark. We demonstrate that our system can more precisely detect revisions than state-of-the-art methods by utilizing the Wikipedia revision dumps and simulated data sets.