Xiaofeng Mao
2025
TRIDENT: Enhancing Large Language Model Safety with Tri-Dimensional Diversified Red-Teaming Data Synthesis
Xiaorui Wu
|
Xiaofeng Mao
|
Fei Li
|
Xin Zhang
|
Xuanhong Li
|
Chong Teng
|
Donghong Ji
|
Zhuang Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) excel in various natural language processing tasks but remain vulnerable to generating harmful content or being exploited for malicious purposes. Although safety alignment datasets have been introduced to mitigate such risks through supervised fine-tuning (SFT), these datasets often lack comprehensive risk coverage. Most existing datasets focus primarily on lexical diversity while neglecting other critical dimensions. To address this limitation, we propose a novel analysis framework to systematically measure the risk coverage of alignment datasets across three essential dimensions: Lexical Diversity, Malicious Intent, and Jailbreak Tactics. We further introduce TRIDENT, an automated pipeline that leverages persona-based, zero-shot LLM generation to produce diverse and comprehensive instructions spanning these dimensions. Each harmful instruction is paired with an ethically aligned response, resulting in two datasets: TRIDENT-Core, comprising 26,311 examples, and TRIDENT-Edge, with 18,773 examples. Fine-tuning Llama 3.1-8B on TRIDENT-Edge demonstrates substantial improvements, achieving an average 14.29% reduction in Harm Score, and a 20% decrease in Attack Success Rate compared to the best-performing baseline model fine-tuned on the WildBreak dataset.
ShieldHead: Decoding-time Safeguard for Large Language Models
Zitao Xuan
|
Xiaofeng Mao
|
Da Chen
|
Xin Zhang
|
Yuhan Dong
|
Jun Zhou
Findings of the Association for Computational Linguistics: ACL 2025
In light of the widespread deployment of Large Language Models (LLMs), the responsibility for safeguarding and regulating LLM-generated content has taken on heightened significance. Recent advancements in LLM-based moderation methods, e.g., LlamaGuard, have demonstrated remarkable promise in identifying safety risks associated with both inputs and outputs in human-AI interactions. However, integrating LLM-based safeguards into a chatbot system requires an additional inference stage involving a moderation LLM with billions of parameters, which significantly increases computational costs and reduces overall efficiency. In this paper, we demonstrate that simply learning a classification head on the last-layer hidden states of the dialogue model provides a strong capability to identify harmful contents. The classification head, referred to as ShieldHead, serves as an auxiliary branch paralleled with next-token-prediction LM head, enabling the detection of potential risks in past text sequences. Additionally, a label disambiguation technique is employed to supervise ShieldHead with both token-level and sentence-level labels, which further enhances its performance. ShieldHead exhibits remarkable efficiency during inference, providing real-time moderation results alongside token-wise streaming output during the chatbot system’s decoding phase. Extensive experimental results demonstrate the superiority of the proposed framework: a state-of-the-art performance on the XSTest and SafeRLHF datasets while running at a speed about **300×** faster (**<1ms**) than previous LLM-based moderation models with ** 99%** less parameters of LlamaGuard.