2025
pdf
bib
abs
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Xiaofei Wen
|
Wenxuan Zhou
|
Wenjie Jacky Mo
|
Muhao Chen
Findings of the Association for Computational Linguistics: ACL 2025
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail’s cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
pdf
bib
abs
MetaScientist: A Human-AI Synergistic Framework for Automated Mechanical Metamaterial Design
Jingyuan Qi
|
Zian Jia
|
Minqian Liu
|
Wangzhi Zhan
|
Junkai Zhang
|
Xiaofei Wen
|
Jingru Gan
|
Jianpeng Chen
|
Qin Liu
|
Mingyu Derek Ma
|
Bangzheng Li
|
Haohui Wang
|
Adithya Kulkarni
|
Muhao Chen
|
Dawei Zhou
|
Ling Li
|
Wei Wang
|
Lifu Huang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
The discovery of novel mechanical metamaterials, whose properties are dominated by their engineered structures rather than chemical composition, is a knowledge-intensive and resource-demanding process. To accelerate the design of novel metamaterials, we present MetaScientist, a human-in-the-loop system that integrates advanced AI capabilities with expert oversight with two primary phases: (1) hypothesis generation, where the system performs complex reasoning to generate novel and scientifically sound hypotheses, supported with domain-specific foundation models and inductive biases retrieved from existing literature; (2) 3D structure synthesis, where a 3D structure is synthesized with a novel 3D diffusion model based on the textual hypothesis and refined it with a LLM-based refinement model to achieve better structure properties. At each phase, domain experts iteratively validate the system outputs, and provide feedback and supplementary materials to ensure the alignment of the outputs with scientific principles and human preferences. Through extensive evaluation from human scientists, MetaScientist is able to deliver novel and valid mechanical metamaterial designs that have the potential to be highly impactful in the metamaterial field.
2024
pdf
bib
abs
Red Teaming Language Models for Processing Contradictory Dialogues
Xiaofei Wen
|
Bangzheng Li
|
Tenghao Huang
|
Muhao Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Most language models currently available are prone to self-contradiction during dialogues. To mitigate this issue, this study explores a novel contradictory dialogue processing task that aims to detect and modify contradictory statements in a conversation. This task is inspired by research on context faithfulness and dialogue comprehension, which have demonstrated that the detection and understanding of contradictions often necessitate detailed explanations. We develop a dataset comprising contradictory dialogues, in which one side of the conversation contradicts itself. Each dialogue is accompanied by an explanatory label that highlights the location and details of the contradiction. With this dataset, we present a Red Teaming framework for contradictory dialogue processing. The framework detects and attempts to explain the dialogue, then modifies the existing contradictory content using the explanation. Our experiments demonstrate that the framework improves the ability to detect contradictory dialogues and provides valid explanations. Additionally, it showcases distinct capabilities for modifying such dialogues. Our study highlights the importance of the logical inconsistency problem in conversational AI.
pdf
bib
abs
Personalized Topic Selection Model for Topic-Grounded Dialogue
Shixuan Fan
|
Wei Wei
|
Xiaofei Wen
|
Xian-Ling Mao
|
Jixiong Chen
|
Dangyang Chen
Findings of the Association for Computational Linguistics: ACL 2024
Recently, the topic-grounded dialogue (TGD) system has become increasingly popular as its powerful capability to actively guide users to accomplish specific tasks through topic-guided conversations. Most existing works utilize side information (e.g. topics or personas) in isolation to enhance the topic selection ability. However, due to disregarding the noise within these auxiliary information sources and their mutual influence, current models tend to predict user-uninteresting and contextually irrelevant topics. To build user-engaging and coherent dialogue agent, we propose a personalized topic selection model for topic-grounded dialogue, named PETD, which takes account of the interaction of side information to selectively aggregate such information for more accurately predicting subsequent topics. Specifically, we evaluate the correlation between global topics and personas and selectively incorporate the global topics aligned with user personas. Furthermore, we propose a contrastive learning based persona selector to filter relevant personas under the constraint of lacking pertinent persona annotations. Throughout the selection and generation, diverse relevant side information is considered. Extensive experiments demonstrate that our proposed method can generate engaging and diverse responses, outperforming state-of-the-art baselines across various evaluation metrics.