Xiang Jiang


2025

pdf bib
NeoQA: Evidence-based Question Answering with Generated News Events
Max Glockner | Xiang Jiang | Leonardo F. R. Ribeiro | Iryna Gurevych | Markus Dreyer
Findings of the Association for Computational Linguistics: ACL 2025

Evaluating Retrieval-Augmented Generation (RAG) in large language models (LLMs) is challenging because benchmarks can quickly become stale. Questions initially requiring retrieval may become answerable from pretraining knowledge as newer models incorporate more recent information during pretraining, making it difficult to distinguish evidence-based reasoning from recall. We introduce NeoQA (News Events for Out-of-training Question Answering), a benchmark designed to address this issue. To construct NeoQA, we generated timelines and knowledge bases of fictional news events and entities along with news articles and Q&A pairs to prevent LLMs from leveraging pretraining knowledge, ensuring that no prior evidence exists in their training data. We propose our dataset as a new platform for evaluating evidence-based question answering, as it requires LLMs to generate responses exclusively from retrieved evidence and only when sufficient evidence is available. NeoQA enables controlled evaluation across various evidence scenarios, including cases with missing or misleading details. Our findings indicate that LLMs struggle to distinguish subtle mismatches between questions and evidence, and suffer from short-cut reasoning when key information required to answer a question is missing from the evidence, underscoring key limitations in evidence-based reasoning.

2024

pdf bib
CCSum: A Large-Scale and High-Quality Dataset for Abstractive News Summarization
Xiang Jiang | Markus Dreyer
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Training a supervised news summarization model requires large amounts of high-quality training data consisting of news articles paired with reference summaries. However, obtaining such data is costly, and existing datasets contain considerable amount of noise. We present a new large-scale and high-quality dataset for supervised abstractive news summarization containing 1.3 million training samples, which we call CCSum. In creating this dataset, we take advantage of the journalistic inverted-pyramid style in news writing: In some articles, the first sentence can be considered a summary of the reported story. Accordingly, among 35 million CommonCrawl News articles, we identify pairs of articles about the same news story and use one article’s first sentence as the summary for the other article. To ensure high quality, we apply strict filters whose parameters we optimize using Bayesian optimization. We show that the resulting dataset is more factual and informative than established summarization datasets; less than 1% of the summaries have major factual inconsistencies with the corresponding news articles, compared to 5.5% to 15.4% in existing datasets, according to our human evaluation. Summarization models trained on our dataset are more favored compared to those trained on CNN/Daily Mail. The proposed dataset can open new opportunities for future research in abstractive summarization.