This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We study abstraction in an emergent communication paradigm. In emergent communication, two artificial neural network agents develop a language while solving a communicative task. In this study, the agents play a concept-level reference game. This means that the speaker agent has to describe a concept to a listener agent, who has to pick the correct target objects that satisfy the concept. Concepts consist of multiple objects and can be either more specific, i.e. the target objects share many attributes, or more generic, i.e. the target objects share fewer attributes. We tested two directions of zero-shot generalization to novel levels of abstraction: When generalizing from more generic to very specific concepts, agents utilized a compositional strategy. When generalizing from more specific to very generic concepts, agents utilized a more flexible linguistic strategy that involves reusing many messages from training. Our results provide evidence that neural network agents can learn robust concepts based on which they can generalize using adaptive linguistic strategies. We discuss how this research provides new hypotheses on abstraction and informs linguistic theories on efficient communication.
The staggering pace with which the capabilities of large language models (LLMs) are increasing, as measured by a range of commonly used natural language understanding (NLU) benchmarks, raises many questions regarding what “understanding” means for a language model and how it compares to human understanding. This is especially true since many LLMs are exclusively trained on text, casting doubt on whether their stellar benchmark performances are reflective of a true understanding of the problems represented by these benchmarks, or whether LLMs simply excel at uttering textual forms that correlate with what someone who understands the problem would say. In this philosophically inspired work, we aim to create some separation between form and meaning, with a series of tests that leverage the idea that world understanding should be consistent across presentational modes—inspired by Fregean senses—of the same meaning. Specifically, we focus on consistency across languages as well as paraphrases. Taking GPT-3.5 as our object of study, we evaluate multisense consistency across five different languages and various tasks. We start the evaluation in a controlled setting, asking the model for simple facts, and then proceed with an evaluation on four popular NLU benchmarks. We find that the model’s multisense consistency is lacking and run several follow-up analyses to verify that this lack of consistency is due to a sense-dependent task understanding. We conclude that, in this aspect, the understanding of LLMs is still quite far from being consistent and human-like, and deliberate on how this impacts their utility in the context of learning about human language and understanding.
At the staggering pace with which the capabilities of large language models (LLMs) are increasing, creating future-proof evaluation sets to assess their understanding becomes more and more challenging. In this paper, we propose a novel paradigm for evaluating LLMs which leverages the idea that correct world understanding should be consistent across different (Fregean) senses of the same meaning. Accordingly, we measure understanding not in terms of correctness but by evaluating consistency across multiple senses that are generated by the model itself. We showcase our approach by instantiating a test where the different senses are different languages, hence using multilingual self-consistency as a litmus test for the model’s understanding and simultaneously addressing the important topic of multilingualism. Taking one of the latest versions of ChatGPT as our object of study, we evaluate multilingual consistency for two different tasks across three different languages. We show that its multilingual consistency is still lacking, and that its task and world understanding are thus not language-independent. As our approach does not require any static evaluation corpora in languages other than English, it can easily and cheaply be extended to different languages and tasks and could become an integral part of future benchmarking efforts.
In natural language, referencing objects at different levels of specificity is a fundamental pragmatic mechanism for efficient communication in context. We develop a novel communication game, the hierarchical reference game, to study the emergence of such reference systems in artificial agents. We consider a simplified world, in which concepts are abstractions over a set of primitive attributes (e.g., color, style, shape). Depending on how many attributes are combined, concepts are more general (“circle”) or more specific (“red dotted circle”). Based on the context, the agents have to communicate at different levels of this hierarchy. Our results show that the agents learn to play the game successfully and can even generalize to novel concepts. To achieve abstraction, they use implicit (omitting irrelevant information) and explicit (indicating that attributes are irrelevant) strategies. In addition, the compositional structure underlying the concept hierarchy is reflected in the emergent protocols, indicating that the need to develop hierarchical reference systems supports the emergence of compositionality.