Wing-Yin Yu

Also published as: Wing Yin Yu


2025

pdf bib
BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
Teng Wang | Wing Yin Yu | Zhenqi He | Zehua Liu | HaileiGong HaileiGong | Han Wu | Xiongwei Han | Wei Shi | Ruifeng She | Fangzhou Zhu | Tao Zhong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, an algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions. The StructuredOR dataset is available on Huggingface https://huggingface.co/datasets/LLM4OR/StructuredOR and GitHub https://github.com/LLM4OR/StructuredOR.

pdf bib
Large Language Models are good multi-lingual learners : When LLMs meet cross-lingual prompts
Teng Wang | Zhenqi He | Wing-Yin Yu | Xiaojin Fu | Xiongwei Han
Proceedings of the 31st International Conference on Computational Linguistics

With the advent of Large Language Models (LLMs), generating rule-based data for real-world applications has become more accessible. Due to the inherent ambiguity of natural language and the complexity of rule sets, especially in long contexts, LLMs often struggle to follow all specified rules, frequently omitting at least one. To enhance the reasoning and understanding of LLMs on long and complex contexts, we propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt, which automatically translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it. Experimental results on public datasets across various tasks have shown MLPrompt can outperform state-of-the-art prompting methods such as Chain of Thought, Tree of Thought, and Self-Consistency. Additionally, we introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances. Further, we extend the proposed framework for text-to-SQL to demonstrate its generation ability towards structured data synthesis.