Wenkai Li


2025

pdf bib
BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data
Wenkai Li | Jiarui Liu | Andy Liu | Xuhui Zhou | Mona T. Diab | Maarten Sap
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this work, we tackle the challenge of embedding realistic human personality traits into LLMs. Previous approaches have primarily focused on prompt-based methods that describe the behavior associated with the desired personality traits, suffering from realism and validity issues. To address these limitations, we introduce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to ground models in how humans express their personality in text. Leveraging this dataset, we explore Supervised Fine-Tuning and Direct Preference Optimization as training-based methods to align LLMs more naturally with human personality patterns. Our methods outperform prompting on personality assessments such as BFI and IPIP-NEO, with trait correlations more closely matching human data. Furthermore, our experiments reveal that models trained to exhibit higher conscientiousness, higher agreeableness, lower extraversion, and lower neuroticism display better performance on reasoning tasks, aligning with psychological findings on how these traits impact human cognitive performance. To our knowledge, this work is the first comprehensive study to demonstrate how training-based methods can shape LLM personalities through learning from real human behaviors.

pdf bib
Toward Global AI Inclusivity: A Large-Scale Multilingual Terminology Dataset (GIST)
Jiarui Liu | Iman Ouzzani | Wenkai Li | Lechen Zhang | Tianyue Ou | Houda Bouamor | Zhijing Jin | Mona T. Diab
Findings of the Association for Computational Linguistics: ACL 2025

The field of machine translation has achieved significant advancements, yet domain-specific terminology translation, particularly in AI, remains challenging. This work introduces GIST, a large-scale multilingual AI terminology dataset containing 5K terms extracted from top AI conference papers spanning 2000 to 2023. The terms were translated into Arabic, Chinese, French, Japanese, and Russian using a hybrid framework that combines LLMs for extraction with human expertise for translation. The dataset’s quality was benchmarked against existing resources, demonstrating superior translation accuracy through crowdsourced evaluation. GIST was integrated into translation workflows using post-translation refinement methods that required no retraining, where LLM prompting consistently improved BLEU and COMET scores. A web demonstration on the ACL Anthology platform highlights its practical application, showcasing improved accessibility for non-English speakers. We address a critical gap in AI terminology resources and fosters global inclusivity and collaboration in AI research.

2024

pdf bib
Automatic Generation of Model and Data Cards: A Step Towards Responsible AI
Jiarui Liu | Wenkai Li | Zhijing Jin | Mona Diab
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In an era of model and data proliferation in machine learning/AI especially marked by the rapid advancement of open-sourced technologies, there arises a critical need for standardized consistent documentation. Our work addresses the information incompleteness in current human-written model and data cards. We propose an automated generation approach using Large Language Models (LLMs). Our key contributions include the establishment of CardBench, a comprehensive dataset aggregated from over 4.8k model cards and 1.4k data cards, coupled with the development of the CardGen pipeline comprising a two-step retrieval process. Our approach exhibits enhanced completeness, objectivity, and faithfulness in generated model and data cards, a significant step in responsible AI documentation practices ensuring better accountability and traceability.