Wenbiao Yin
2025
WebWalker: Benchmarking LLMs in Web Traversal
Jialong Wu
|
Wenbiao Yin
|
Yong Jiang
|
Zhenglin Wang
|
Zekun Xi
|
Runnan Fang
|
Linhai Zhang
|
Yulan He
|
Deyu Zhou
|
Pengjun Xie
|
Fei Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval-augmented generation (RAG) demonstrates remarkable performance across tasks in open-domain question-answering. However, traditional search engines may retrieve shallow content, limiting the ability of LLMs to handle complex, multi-layered information. To address this, we introduce WebWalkerQA, a benchmark designed to assess the ability of LLMs to perform web traversal. It evaluates the capacity of LLMs to traverse a website’s subpages to extract high-quality data systematically. We propose WebWalker, which is a multi-agent framework that mimics human-like web navigation through an explore-critic paradigm. Extensive experimental results show that WebWalkerQA is challenging and demonstrates the effectiveness of RAG combined with WebWalker, through this horizontal and vertical integration in real-world scenarios.
2023
Improving Speech Translation by Fusing Speech and Text
Wenbiao Yin
|
Zhicheng Liu
|
Chengqi Zhao
|
Tao Wang
|
Jian Tong
|
Rong Ye
Findings of the Association for Computational Linguistics: EMNLP 2023
In speech translation, leveraging multimodal data to improve model performance and address limitations of individual modalities has shown significant effectiveness. In this paper, we harness the complementary strengths of speech and text to improve speech translation. However, speech and text are disparate modalities, we observe three aspects of modality gap that impede their integration in a speech translation model. To tackle these gaps, we propose **Fuse**-**S**peech-**T**ext (**FuseST**), a cross-modal model which supports three distinct input modalities for translation: speech, text and fused speech-text. We leverage multiple techniques for cross-modal alignment and conduct a comprehensive analysis to assess its impact on speech translation, machine translation and fused speech-text translation. We evaluate FuseST on MuST-C, GigaST and newstest benchmark. Experiments show that the proposed FuseST achieves an average 34.0 BLEU on MuST-C En→De/Es/Fr (vs SOTA +1.1 BLEU). Further experiments demonstrate that FuseST does not degrade on MT task, as observed in previous works. Instead, it yields an average improvement of 3.2 BLEU over the pre-trained MT model. Code is available at https://github.com/WenbiaoYin/FuseST.
2022
Efficient Nearest Neighbor Emotion Classification with BERT-whitening
Wenbiao Yin
|
Lin Shang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Retrieval-based methods have been proven effective in many NLP tasks. Previous methods use representations from the pre-trained model for similarity search directly. However, the sentence representations from the pre-trained model like BERT perform poorly in retrieving semantically similar sentences, resulting in poor performance of the retrieval-based methods. In this paper, we propose kNN-EC, a simple and efficient non-parametric emotion classification (EC) method using nearest neighbor retrieval. We use BERT-whitening to get better sentence semantics, ensuring that nearest neighbor retrieval works. Meanwhile, BERT-whitening can also reduce memory storage of datastore and accelerate retrieval speed, solving the efficiency problem of the previous methods. kNN-EC average improves the pre-trained model by 1.17 F1-macro on two emotion classification datasets.