Wen Huang


2025

pdf bib
SpeechFake: A Large-Scale Multilingual Speech Deepfake Dataset Incorporating Cutting-Edge Generation Methods
Wen Huang | Yanmei Gu | Zhiming Wang | Huijia Zhu | Yanmin Qian
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As speech generation technology advances, the risk of misuse through deepfake audio has become a pressing concern, which underscores the critical need for robust detection systems. However, many existing speech deepfake datasets are limited in scale and diversity, making it challenging to train models that can generalize well to unseen deepfakes. To address these gaps, we introduce SpeechFake, a large-scale dataset designed specifically for speech deepfake detection. SpeechFake includes over 3 million deepfake samples, totaling more than 3,000 hours of audio, generated using 40 different speech synthesis tools. The dataset encompasses a wide range of generation techniques, including text-to-speech, voice conversion, and neural vocoder, incorporating the latest cutting-edge methods. It also provides multilingual support, spanning 46 languages. In this paper, we offer a detailed overview of the dataset’s creation, composition, and statistics. We also present baseline results by training detection models on SpeechFake, demonstrating strong performance on both its own test sets and various unseen test sets. Additionally, we conduct experiments to rigorously explore how generation methods, language diversity, and speaker variation affect detection performance. We believe SpeechFake will be a valuable resource for advancing speech deepfake detection and developing more robust models for evolving generation techniques.

2024

pdf bib
Visual Hallucinations of Multi-modal Large Language Models
Wen Huang | Hongbin Liu | Minxin Guo | Neil Gong
Findings of the Association for Computational Linguistics: ACL 2024

Visual hallucination (VH) means that a multi-modal LLM (MLLM) imagines incorrect details about an image in visual question answering. Existing studies find VH instances only in existing image datasets, which results in biased understanding of MLLMs’ performance under VH due to limited diversity of such VH instances. In this work, we propose a tool called VHTest to generate a diverse set of VH instances. Specifically, VHTest finds some initial VH instances in existing image datasets (e.g., COCO), generates a text description for each VH mode, and uses a text-to-image generative model (e.g., DALL-E-3) to generate VH images based on the text descriptions. We collect a benchmark dataset with 1,200 VH instances in 8 VH modes using VHTest. We find that existing MLLMs such as GPT-4, LLaVA-1.5, and MiniGPT-v2 hallucinate for a large fraction of the instances in our benchmark. Moreover, we find that fine-tuning an MLLM using our benchmark dataset reduces its likelihood to hallucinate without sacrificing its performance on other benchmarks. Our benchmarks are publicly available: https://github.com/wenhuang2000/VHTest.