Weijie Yu


2025

pdf bib
MAPS: Motivation-Aware Personalized Search via LLM-Driven Consultation Alignment
Weicong Qin | Yi Xu | Weijie Yu | Chenglei Shen | Ming He | Jianping Fan | Xiao Zhang | Jun Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Personalized product search aims to retrieve and rank items that match users’ preferences and search intent. Despite their effectiveness, existing approaches typically assume that users’ query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks. Code and supplementary materials are available at: https://github.com/E-qin/MAPS.

pdf bib
CitaLaw: Enhancing LLM with Citations in Legal Domain
Kepu Zhang | Weijie Yu | Sunhao Dai | Jun Xu
Findings of the Association for Computational Linguistics: ACL 2025

In this paper, we propose CitaLaw, the first benchmark designed to evaluate LLMs’ ability to produce legally sound responses with appropriate citations. CitaLaw features a diverse set of legal questions for both laypersons and practitioners, paired with a comprehensive corpus of law articles and precedent cases as a reference pool. This framework enables LLM-based systems to retrieve supporting citations from the reference corpus and align these citations with the corresponding sentences in their responses. Moreover, we introduce syllogism-inspired evaluation methods to assess the legal alignment between retrieved references and LLM-generated responses, as well as their consistency with user questions. Extensive experiments on 2 open-domain and 7 legal-specific LLMs demonstrate that integrating legal references substantially enhances response quality. Furthermore, our proposed syllogism-based evaluation method exhibits strong agreement with human judgments.

2024

pdf bib
Logic Rules as Explanations for Legal Case Retrieval
ZhongXiang Sun | Kepu Zhang | Weijie Yu | Haoyu Wang | Jun Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this paper, we address the issue of using logic rules to explain the results from legal case retrieval. The task is critical to legal case retrieval because the users (e.g., lawyers or judges) are highly specialized and require the system to provide logic, faithful, and interpretable explanations before making legal decisions. Recently, research efforts have been made to learn explainable legal case retrieval models. However, these methods usually select rationales (key sentences) from the legal cases as explanations, failing to provide faithful and logicly correct explanations. In this paper, we propose Neural-Symbolic enhanced Legal Case Retrieval (NS-LCR), a framework that explicitly conducts reasoning on the matching of legal cases through learning case-level and law-level logic rules. The learned rules are then integrated into the retrieval process in a neuro-symbolic manner. Benefiting from the logic and interpretable nature of the logic rules, NS-LCR is equipped with built-in faithful explainability. We also show that NS-LCR is a model-agnostic framework that can be plug-in for multiple legal retrieval models. To demonstrate the superiority of NS-LCR, we extend the benchmarks of LeCaRD and ELAM with manually annotated logic rules and propose a new explainability measure based on Large Language Models (LLMs). Extensive experiments show that NS-LCR can achieve state-of-the-art ranking performances, and the empirical analysis also showed that NS-LCR is capable of providing faithful explanations for legal case retrieval.

2022

pdf bib
Optimal Partial Transport Based Sentence Selection for Long-form Document Matching
Weijie Yu | Liang Pang | Jun Xu | Bing Su | Zhenhua Dong | Ji-Rong Wen
Proceedings of the 29th International Conference on Computational Linguistics

One typical approach to long-form document matching is first conducting alignment between cross-document sentence pairs, and then aggregating all of the sentence-level matching signals. However, this approach could be problematic because the alignment between documents is partial — despite two documents as a whole are well-matched, most of the sentences could still be dissimilar. Those dissimilar sentences lead to spurious sentence-level matching signals which may overwhelm the real ones, increasing the difficulties of learning the matching function. Therefore, accurately selecting the key sentences for document matching is becoming a challenging issue. To address the issue, we propose a novel matching approach that equips existing document matching models with an Optimal Partial Transport (OPT) based component, namely OPT-Match, which selects the sentences that play a major role in matching. Enjoying the partial transport properties of OPT, the selected key sentences can not only effectively enhance the matching accuracy, but also be explained as the rationales for the matching results. Extensive experiments on four publicly available datasets demonstrated that existing methods equipped with OPT-Match consistently outperformed the corresponding underlying methods. Evaluations also showed that the key sentences selected by OPT-Match were consistent with human-provided rationales.

2020

pdf bib
Wasserstein Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains
Weijie Yu | Chen Xu | Jun Xu | Liang Pang | Xiaopeng Gao | Xiaozhao Wang | Ji-Rong Wen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

One approach to matching texts from asymmetrical domains is projecting the input sequences into a common semantic space as feature vectors upon which the matching function can be readily defined and learned. In real-world matching practices, it is often observed that with the training goes on, the feature vectors projected from different domains tend to be indistinguishable. The phenomenon, however, is often overlooked in existing matching models. As a result, the feature vectors are constructed without any regularization, which inevitably increases the difficulty of learning the downstream matching functions. In this paper, we propose a novel match method tailored for text matching in asymmetrical domains, called WD-Match. In WD-Match, a Wasserstein distance-based regularizer is defined to regularize the features vectors projected from different domains. As a result, the method enforces the feature projection function to generate vectors such that those correspond to different domains cannot be easily discriminated. The training process of WD-Match amounts to a game that minimizes the matching loss regularized by the Wasserstein distance. WD-Match can be used to improve different text matching methods, by using the method as its underlying matching model. Four popular text matching methods have been exploited in the paper. Experimental results based on four publicly available benchmarks showed that WD-Match consistently outperformed the underlying methods and the baselines.