Wei Su


2025

pdf bib
TransBench: Breaking Barriers for Transferable Graphical User Interface Agents in Dynamic Digital Environments
Yuheng Lu | Qian Yu | Hongru Wang | Zeming Liu | Wei Su | Yanping Liu | Yuhang Guo | Maocheng Liang | Yunhong Wang | Haifeng Wang
Findings of the Association for Computational Linguistics: ACL 2025

Graphical User Interface (GUI) agents, which autonomously operate on digital interfaces through natural language instructions, hold transformative potential for accessibility, automation, and user experience. A critical aspect of their functionality is grounding — the ability to map linguistic intents to visual and structural interface elements. However, existing GUI agents often struggle to adapt to the dynamic and interconnected nature of real-world digital environments, where tasks frequently span multiple platforms and applications while also being impacted by version updates. To address this, we introduce TransBench, the first benchmark designed to systematically evaluate and enhance the transferability of GUI agents across three key dimensions: cross-version transferability (adapting to version updates), cross-platform transferability (generalizing across platforms like iOS, Android, and Web), and cross-application transferability (handling tasks spanning functionally distinct apps). TransBench includes 15 app categories with diverse functionalities, capturing essential pages across versions and platforms to enable robust evaluation. Our experiments demonstrate significant improvements in grounding accuracy, showcasing the practical utility of GUI agents in dynamic, real-world environments. Our code and data will be publicly available at GitHub.

2022

pdf bib
SpecNFS: A Challenge Dataset Towards Extracting Formal Models from Natural Language Specifications
Sayontan Ghosh | Amanpreet Singh | Alex Merenstein | Wei Su | Scott A. Smolka | Erez Zadok | Niranjan Balasubramanian
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Can NLP assist in building formal models for verifying complex systems? We study this challenge in the context of parsing Network File System (NFS) specifications. We define a semantic-dependency problem over SpecIR, a representation language we introduce to model sentences appearing in NFS specification documents (RFCs) as IF-THEN statements, and present an annotated dataset of 1,198 sentences. We develop and evaluate semantic-dependency parsing systems for this problem. Evaluations show that even when using a state-of-the-art language model, there is significant room for improvement, with the best models achieving an F1 score of only 60.5 and 33.3 in the named-entity-recognition and dependency-link-prediction sub-tasks, respectively. We also release additional unlabeled data and other domain-related texts. Experiments show that these additional resources increase the F1 measure when used for simple domain-adaption and transfer-learning-based approaches, suggesting fruitful directions for further research