Vimal Bhat


2025

pdf bib
CRPO: Confidence-Reward Driven Preference Optimization for Machine Translation
Guofeng Cui | Pichao Wang | Yang Liu | Zemian Ke | Zhu Liu | Vimal Bhat
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have shown great potential in natural language processing tasks, but their application to machine translation (MT) remains challenging due to pretraining on English-centric data and the complexity of reinforcement learning from human feedback (RLHF). Direct Preference Optimization (DPO) has emerged as a simpler and more efficient alternative, but its performance depends heavily on the quality of preference data. To address this, we propose Confidence-Reward driven Preference Optimization (CRPO), a novel method that combines reward scores with model confidence to improve data selection for fine-tuning. CRPO selects challenging sentence pairs where the model is uncertain or underperforms, leading to more effective learning. While primarily designed for LLMs, CRPO also generalizes to encoder-decoder models like NLLB, demonstrating its versatility. Empirical results show that CRPO outperforms existing methods such as RS-DPO, RSO and MBR score in both translation accuracy and data efficiency.

pdf bib
Detect, Disambiguate, and Translate: On-Demand Visual Reasoning for Multimodal Machine Translation with Large Vision-Language Models
Danyang Liu | Fanjie Kong | Xiaohang Sun | Dhruva Patil | Avijit Vajpayee | Zhu Liu | Vimal Bhat | Najmeh Sadoughi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Multimodal machine translation (MMT) aims to leverage additional modalities to assist in language translation. With limited parallel data, current MMT systems rely heavily on monolingual English captioning data. These systems face three key issues: they often overlook that visual signals are unnecessary in many cases, they lack transparency in how visual information is used for disambiguation when needed, and they have yet to fully explore the potential of large-scale vision-language models (LVLMs) for MMT tasks. To address these issues, we propose the Detect, Disambiguate, and Translate (DeDiT) framework, the first reasoning-based framework for MMT leveraging LVLMs. DeDiT detects ambiguity in the input sentence, performs visual reasoning only when ambiguity is found, and generates the final translation.We implemented two versions of DeDiT: a prompting method for large proprietary LVLMs and a fine-tuning method for smaller LVLMs using synthetic data. Experiments on the Multi30K and CoMMuTE benchmarks show that DeDiT outperforms state-of-the-art models in disambiguation accuracy and translation quality. We also introduce an improved evaluation metric for disambiguation accuracy that enhances performance assessment and can be applied to proprietary models accessed via APIs.