Tung Nguyen


2025

pdf bib
Topic Modeling for Short Texts via Optimal Transport-Based Clustering
Tu Vu | Manh Do | Tung Nguyen | Linh Ngo Van | Sang Dinh | Thien Huu Nguyen
Findings of the Association for Computational Linguistics: ACL 2025

Discovering topics and learning document representations in topic space are two crucial aspects of topic modeling, particularly in the short-text setting, where inferring topic proportions for individual documents is highly challenging. Despite significant progress in neural topic modeling, effectively distinguishing document representations as well as topic embeddings remains an open problem. In this paper, we propose a novel method called **En**hancing Global **C**lustering with **O**ptimal **T**ransport in Topic Modeling (EnCOT). Our approach utilizes an abstract global clusters concept to capture global information and then employs the Optimal Transport framework to align document representations in the topic space with global clusters, while also aligning global clusters with topics. This dual alignment not only enhances the separation of documents in the topic space but also facilitates learning of latent topics. Through extensive experiments, we demonstrate that our method outperforms state-of-the-art techniques in short-text topic modeling across commonly used metrics.

pdf bib
HiCOT: Improving Neural Topic Models via Optimal Transport and Contrastive Learning
Hoang Tran Vuong | Tue Le | Tu Vu | Tung Nguyen | Linh Ngo Van | Sang Dinh | Thien Huu Nguyen
Findings of the Association for Computational Linguistics: ACL 2025

Recent advances in neural topic models (NTMs) have improved topic quality but still face challenges: weak document-topic alignment, high inference costs due to large pretrained language models (PLMs), and limited modeling of hierarchical topic structures. To address these issues, we introduce HiCOT (Hierarchical Clustering and Contrastive Learning with Optimal Transport for Neural Topic Modeling), a novel framework that enhances topic coherence and efficiency. HiCOT integrates Optimal Transport to refine document-topic relationships using compact PLM-based embeddings, captures semantic structure of the documents. Additionally, it employs hierarchical clustering combine with contrastive learning to disentangle topic-word and topic-topic relationships, ensuring clearer structure and better coherence. Experimental results on multiple benchmark datasets demonstrate HiCOT’s superior effectiveness over existing NTMs in topic coherence, topic performance, representation quality, and computational efficiency.

pdf bib
GloCOM: A Short Text Neural Topic Model via Global Clustering Context
Quang Duc Nguyen | Tung Nguyen | Duc Anh Nguyen | Linh Ngo Van | Sang Dinh | Thien Huu Nguyen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Uncovering hidden topics from short texts is challenging for traditional and neural models due to data sparsity, which limits word co-occurrence patterns, and label sparsity, stemming from incomplete reconstruction targets. Although data aggregation offers a potential solution, existing neural topic models often overlook it due to time complexity, poor aggregation quality, and difficulty in inferring topic proportions for individual documents. In this paper, we propose a novel model, **GloCOM** (**Glo**bal **C**lustering C**O**ntexts for Topic **M**odels), which addresses these challenges by constructing aggregated global clustering contexts for short documents, leveraging text embeddings from pre-trained language models. GloCOM can infer both global topic distributions for clustering contexts and local distributions for individual short texts. Additionally, the model incorporates these global contexts to augment the reconstruction loss, effectively handling the label sparsity issue. Extensive experiments on short text datasets show that our approach outperforms other state-of-the-art models in both topic quality and document representations.

pdf bib
Sharpness-Aware Minimization for Topic Models with High-Quality Document Representations
Tung Nguyen | Tue Le | Hoang Tran Vuong | Quang Duc Nguyen | Duc Anh Nguyen | Linh Ngo Van | Sang Dinh | Thien Huu Nguyen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent advanced frameworks in topic models have significantly enhanced the performance compared to conventional probabilistic approaches. Such models, mostly constructed from neural network architecture together with other advanced techniques such as contextual embedding, optimal transport distance and pre-trained language model, etc. have effectively improved the topic quality and document topic distribution. Despite the improvements, these methods lack considerations of effective optimization for complex objective functions that contain log-likelihood and additional regularization terms. In this study, we propose to apply an efficient optimization method to improve the generalization and performance of topic models. Our approach explicitly considers the sharpness of the loss landscape during optimization, which forces the optimizer to choose directions in the parameter space that lead to flatter minima, in which the models are typically more stable and robust to small perturbations in the data. Additionally, we propose an effective strategy to select the flatness region for parameter optimization by leveraging the optimal transport distance between doc-topic distributions and doc-cluster proportions, which can effectively enhance document representation. Experimental results on popular benchmark datasets demonstrate that our method effectively improves the performance of baseline topic models.

2024

pdf bib
NeuroMax: Enhancing Neural Topic Modeling via Maximizing Mutual Information and Group Topic Regularization
Duy-Tung Pham | Thien Trang Nguyen Vu | Tung Nguyen | Linh Van Ngo | Duc Anh Nguyen | Thien Huu Nguyen
Findings of the Association for Computational Linguistics: EMNLP 2024

Recent advances in neural topic models have concentrated on two primary directions: the integration of the inference network (encoder) with a pre-trained language model (PLM) and the modeling of the relationship between words and topics in the generative model (decoder). However, the use of large PLMs significantly increases inference costs, making them less practical for situations requiring low inference times. Furthermore, it is crucial to simultaneously model the relationships between topics and words as well as the interrelationships among topics themselves. In this work, we propose a novel framework called NeuroMax (**Neur**al T**o**pic Model with **Max**imizing Mutual Information with Pretrained Language Model and Group Topic Regularization) to address these challenges. NeuroMax maximizes the mutual information between the topic representation obtained from the encoder in neural topic models and the representation derived from the PLM. Additionally, NeuroMax employs optimal transport to learn the relationships between topics by analyzing how information is transported among them. Experimental results indicate that NeuroMax reduces inference time, generates more coherent topics and topic groups, and produces more representative document embeddings, thereby enhancing performance on downstream tasks.