Tong Zheng


2025

pdf bib
Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation
Yingfeng Luo | Tong Zheng | Yongyu Mu | Bei Li | Qinghong Zhang | Yongqi Gao | Ziqiang Xu | Peinan Feng | Xiaoqian Liu | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics: ACL 2025

The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve 2.4 ∼ 6.5 × inference speedups and a 75% reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks.

pdf bib
Asymmetric Conflict and Synergy in Post-training for LLM-based Multilingual Machine Translation
Tong Zheng | Yan Wen | Huiwen Bao | Junfeng Guo | Heng Huang
Findings of the Association for Computational Linguistics: ACL 2025

The emergence of Large Language Models (LLMs) has advanced the multilingual machine translation (MMT), yet the Curse of Multilinguality (CoM) remains a major challenge. Existing work in LLM-based MMT typically mitigates this issue via scaling up training and computation budget, which raises a critical question: Is scaling up the training and computation budget truly necessary for high-quality MMT, or can a deeper understanding of CoM provide a more efficient solution? To explore this problem, we analyze the linguistic conflicts and synergy, the underlying mechanism of CoM during post-training phase. We identify an asymmetric phenomenon in linguistic conflicts and synergy: the dominance of conflicts and synergy varies in different translation directions, leading to sub-optimal adaptation in existing post-training methods. We further find that a significant bottleneck in MMT appears to lie in post-training rather than multilingual pre-training, suggesting the need for more effective adaptation strategies. Building on these new insights, we propose a direction-aware training approach, combined with group-wise model merging, to address asymmetry in linguistic conflicts and synergy explicitly. Leveraging this strategy, our method fine-tunes X-ALMA-13B-Pretrain—trained only with multilingual pre-training—achieving comparable performance to XALMA-13B (only SFT) while using only 20B pretraining tokens and 17B parameters—5.5× fewer pretraining-tokens and 1.7x fewer model size—with just 0.85 COMET drop on Flores-200 testsets of 50 languages.

2024

pdf bib
EIT: Enhanced Interactive Transformer
Tong Zheng | Bei Li | Huiwen Bao | Tong Xiao | JingBo Zhu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Two principles: the complementary principle and the consensus principle are widely acknowledged in the literature of multi-view learning. However, the current design of multi-head self-attention, an instance of multi-view learning, prioritizes the complementarity while ignoring the consensus. To address this problem, we propose an enhanced multi-head self-attention (EMHA). First, to satisfy the complementary principle, EMHA removes the one-to-one mapping constraint among queries and keys in multiple subspaces and allows each query to attend to multiple keys. On top of that, we develop a method to fully encourage consensus among heads by introducing two interaction models, namely inner-subspace interaction and cross-subspace interaction. Extensive experiments on a wide range of language tasks (e.g., machine translation, abstractive summarization and grammar correction, language modeling), show its superiority, with a very modest increase in model size. Our code would be available at: https://github.com/zhengkid/EIT-Enhanced-Interactive-Transformer.

pdf bib
A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution
Zhengmian Hu | Tong Zheng | Heng Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Authorship attribution aims to identify the origin or author of a document. Traditional approaches have heavily relied on manual features and fail to capture long-range correlations, limiting their effectiveness. Recent advancements leverage text embeddings from pre-trained language models, which require significant fine-tuning on labeled data, posing challenges in data dependency and limited interpretability. Large Language Models (LLMs), with their deep reasoning capabilities and ability to maintain long-range textual associations, offer a promising alternative. This study explores the potential of pre-trained LLMs in one-shot authorship attribution, specifically utilizing Bayesian approaches and probability outputs of LLMs. Our methodology calculates the probability that a text entails previous writings of an author, reflecting a more nuanced understanding of authorship. By utilizing only pre-trained models such as Llama-3-70B, our results on the IMDb and blog datasets show an impressive 85% accuracy in one-shot authorship classification across ten authors. Our findings set new baselines for one-shot authorship analysis using LLMs and expand the application scope of these models in forensic linguistics. This work also includes extensive ablation studies to validate our approach.

pdf bib
PartialFormer: Modeling Part Instead of Whole for Machine Translation
Tong Zheng | Bei Li | Huiwen Bao | Jiale Wang | Weiqiao Shan | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics: ACL 2024

The design choices in Transformer feed-forward neural networks have resulted in significant computational and parameter overhead. In this work, we emphasize the importance of hidden dimensions in designing lightweight FFNs, a factor often overlooked in previous architectures. Guided by this principle, we introduce PartialFormer, a parameter-efficient Transformer architecture utilizing multiple smaller FFNs to reduce parameters and computation while maintaining essential hidden dimensions. These smaller FFNs are integrated into a multi-head attention mechanism for effective collaboration. We also propose a tailored head scaling strategy to enhance PartialFormer’s capabilities. Furthermore, we present a residual-like attention calculation to improve depth scaling within PartialFormer. Extensive experiments on 9 translation tasks and 1 abstractive summarization task validate the effectiveness of our PartialFormer approach on machine translation and summarization tasks. Our code would be available at: https://github.com/zhengkid/PartialFormer.

2023

pdf bib
Incorporating Probing Signals into Multimodal Machine Translation via Visual Question-Answering Pairs
Yuxin Zuo | Bei Li | Chuanhao Lv | Tong Zheng | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

This paper presents an in-depth study of multimodal machine translation (MMT), examining the prevailing understanding that MMT systems exhibit decreased sensitivity to visual information when text inputs are complete. Instead, we attribute this phenomenon to insufficient cross-modal interaction, rather than image information redundancy. A novel approach is proposed to generate parallel Visual Question-Answering (VQA) style pairs from the source text, fostering more robust cross-modal interaction. Using Large Language Models (LLMs), we explicitly model the probing signal in MMT to convert it into VQA-style data to create the Multi30K-VQA dataset. An MMT-VQA multitask learning framework is introduced to incorporate explicit probing signals from the dataset into the MMT training process. Experimental results on two widely-used benchmarks demonstrate the effectiveness of this novel approach. Our code and data would be available at: https://github.com/libeineu/MMT-VQA.