Tom Gunter


2025

pdf bib
Can External Validation Tools Improve Annotation Quality for LLM-as-a-Judge?
Arduin Findeis | Floris Weers | Guoli Yin | Ke Ye | Ruoming Pang | Tom Gunter
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pairwise preferences over model responses are widely collected to evaluate and provide feedback to large language models (LLMs). Given two alternative model responses to the same input, a human or AI annotator selects the “better” response. This approach can provide feedback for domains where other hard-coded metrics are difficult to obtain (e.g., chat response quality), thereby helping model evaluation or training. However, for some domains high-quality pairwise comparisons can be tricky to obtain - from AI and humans. For example, for responses with many factual statements, annotators may disproportionately weigh writing quality rather than underlying facts. In this work, we explore augmenting standard AI annotator systems with additional tools to improve performance on three challenging response domains: long-form factual, math and code tasks. We propose a tool-using agentic system to provide higher quality feedback on these domains. Our system uses web-search and code execution to ground itself based on external validation, independent of the LLM’s internal knowledge and biases. We provide extensive experimental results evaluating our method across the three targeted response domains as well as general annotation tasks, using RewardBench (incl. AlpacaEval and LLMBar), RewardMath, as well as three new datasets for domains with saturated pre-existing datasets. Our results indicate that external tools can indeed improve performance in many, but not all, cases. More generally, our experiments highlight the sensitivity of performance to simple parameters (e.g., prompt) and the need for improved (non-saturated) annotator benchmarks. We share our code at https://github.com/apple/ml-agent-evaluator.

2023

pdf bib
STAIR: Learning Sparse Text and Image Representation in Grounded Tokens
Chen Chen | Bowen Zhang | Liangliang Cao | Jiguang Shen | Tom Gunter | Albin Jose | Alexander Toshev | Yantao Zheng | Jonathon Shlens | Ruoming Pang | Yinfei Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Image and text retrieval is one of the foundational tasks in the vision and language domain with multiple real-world applications. State-of-the-art contrastive approaches, e.g. CLIP, ALIGN, represent images and texts as dense embeddings and calculate the similarity in the dense embedding space as the matching score. On the other hand, sparse semantic features like bag-of-words models are more interpretable, but believed to suffer from inferior accuracy than dense representations. In this work, we show that it is possible to build a sparse semantic representation that is as powerful as, or even better than, dense presentations. We extend the CLIP model and build a sparse text and image representation (STAIR), where the image and text are mapped to a sparse token space. Each token in the space is a (sub-)word in the vocabulary, which is not only interpretable but also easy to integrate with existing information retrieval systems. STAIR model significantly outperforms a CLIP model with +4.9% and +4.3% absolute Recall@1 improvement on COCO-5k textimage and imagetext retrieval respectively. It also achieved better performance on both of ImageNet zero-shot and linear probing compared to CLIP.