Ting Sun
2025
DiSCo: Device-Server Collaborative LLM-based Text Streaming Services
Ting Sun
|
Penghan Wang
|
Fan Lai
Findings of the Association for Computational Linguistics: ACL 2025
The rapid rise of large language models (LLMs) in text streaming services has introduced significant cost and Quality of Experience (QoE) challenges in serving millions of daily requests, especially in meeting Time-To-First-Token (TTFT) and Time-Between-Token (TBT) requirements for real-time interactions. Our real-world measurements show that both server-based and on-device deployments struggle to meet diverse QoE demands: server deployments face high costs and last-hop issues (e.g., Internet latency and dynamics), while on-device LLM inference is constrained by resources. We introduce , a device-server cooperative scheduler designed to optimize users’ QoE by adaptively routing requests and migrating response generation between endpoints while maintaining cost constraints. employs cost-aware scheduling, leveraging the predictable speed of on-device LLM inference with the flexible capacity of server-based inference to dispatch requests on the fly, while introducing a token-level migration mechanism to ensure consistent token delivery during migration. Evaluations on real-world workloads—including commercial services like OpenAI GPT and DeepSeek, and open-source deployments such as LLaMA3—show that can improve users’ QoE by reducing tail TTFT (11-52%) and mean TTFT (6-78%) across different model-device configurations, while dramatically reducing serving costs by up to 84% through its migration mechanism while maintaining comparable QoE levels.
2024
SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation
Xiaoze Liu
|
Ting Sun
|
Tianyang Xu
|
Feijie Wu
|
Cunxiang Wang
|
Xiaoqian Wang
|
Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defenses targeted against the generation of copyrighted text.To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose a lightweight, real-time defense mechanism to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanism substantially reduces the volume of copyrighted text generated by LLMs by effectively refusing malicious requests.