This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Recent advancements in combining knowledge graphs (KGs) with large language models (LLMs) have demonstrated promising potential in complex KG reasoning tasks, yet existing approaches face limitations in path exploration strategies or excessive computational overhead. We propose ReKG-MCTS, a novel training-free framework that synergizes Monte Carlo Tree Search (MCTS) with LLM capabilities to enable dynamic reasoning over KGs. The framework conceptualizes KG reasoning as a decision-making process, where MCTS strategically explores paths over KG while LLMs provide semantic guidance for reasoning paths. The framework consists of four phases: (1) UCB-based node selection that balances exploration-exploitation on KG, (2) path expansion with KG structural constraints, (3) LLM-guided MC rollouts for simulation, and (4) value backpropagation. Experimental results on WebQSP and CWQ demonstrate that ReKG-MCTS outperforms existing training-free methods and achieves competitive performance compared to fine-tuned baselines. These findings suggest a new paradigm for leveraging language models in KG reasoning tasks. The code is available at https://github.com/ShawnKS/rekgmcts.
Large language models (LLMs) have demonstrated remarkable evaluation and critique capabilities, providing insightful feedback and identifying flaws in various tasks. However, limited research has explored which types of critiques are most effective for improving model responses or how to generate such critiques. To address this gap, we introduce Refinement-oriented Critique Optimization (RCO), a novel framework designed to train critic models using refinement signals. RCO uses a feedback loop where critiques, generated by the critic model, guide the actor model in refining its responses. The critique utility (CU) quantifies the effectiveness of these refinements, serving as the reward signal for training the critic model. By focusing on critiques that lead to better refinements, RCO eliminates the need for direct critique preference assessment, ensuring that critiques driving meaningful improvements are rewarded. We evaluate RCO across five tasks—dialog generation, summarization, question answering, mathematical reasoning, and code generation—and show that it significantly outperforms traditional methods and open-source models in terms of critique quality and refinement outcomes. Our contributions include the introduction of RCO, a novel supervision scheme based on refined response preferences, and comprehensive experimental results that highlight the method’s effectiveness in enhancing LLM critique-refinement loops. Code and data will be publicly available upon acceptance of this paper.
Recent advances in large language models (LLMs) focus on aligning models with human values to minimize harmful content. However, existing methods often rely on a single type of feedback, such as preferences, annotated labels, or critiques, which can lead to overfitting and suboptimal performance. In this paper, we propose Diverse AIFeedback (DAIF), a novel approach that integrates three types of feedback—critique, refinement, and preference—tailored to tasks of varying uncertainty levels. Through an analysis of information gain, we show that critique feedback is most effective for low-uncertainty tasks, refinement feedback for medium-uncertainty tasks, and preference feedback for high-uncertainty tasks. Training with this diversified feedback reduces overfitting and improves alignment. Experimental results across three tasks—question answering, dialog generation, and text summarization–demonstrate that DAIF outperforms traditional methods relying on a single feedback type.1
Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context.
Though Multimodal Sentiment Analysis (MSA) proves effective by utilizing rich information from multiple sources (*e.g.,* language, video, and audio), the potential sentiment-irrelevant and conflicting information across modalities may hinder the performance from being further improved. To alleviate this, we present Adaptive Language-guided Multimodal Transformer (ALMT), which incorporates an Adaptive Hyper-modality Learning (AHL) module to learn an irrelevance/conflict-suppressing representation from visual and audio features under the guidance of language features at different scales. With the obtained hyper-modality representation, the model can obtain a complementary and joint representation through multimodal fusion for effective MSA. In practice, ALMT achieves state-of-the-art performance on several popular datasets (*e.g.,* MOSI, MOSEI and CH-SIMS) and an abundance of ablation demonstrates the validity and necessity of our irrelevance/conflict suppression mechanism.
Few-shot relation classification aims to classify the relation type between two given entities in a sentence by training with a few labeled instances for each relation. However, most of existing models fail to distinguish multiple relations that co-exist in one sentence. This paper presents a novel dependency-aware prototype learning (DAPL) method for few-shot relation classification. Concretely, we utilize dependency trees and shortest dependency paths (SDP) as structural information to complement the contextualized representations of input sentences by using the dependency-aware embedding as attention inputs to learn attentive sentence representations. In addition, we introduce a gate controlled update mechanism to update the dependency-aware representations according to the output of each network layer. Extensive experiments on the FewRel dataset show that DAPL achieves substantially better performance than strong baselines. For reproducibility, we will release our code and data upon the publication of this paper at https://github.com/publicstaticvo/DAPL.