2025
pdf
bib
abs
In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents
Zhen Tan
|
Jun Yan
|
I-Hung Hsu
|
Rujun Han
|
Zifeng Wang
|
Long Le
|
Yiwen Song
|
Yanfei Chen
|
Hamid Palangi
|
George Lee
|
Anand Rajan Iyer
|
Tianlong Chen
|
Huan Liu
|
Chen-Yu Lee
|
Tomas Pfister
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information from long-term interactions limits their effectiveness in applications requiring sustained personalization. External memory mechanisms have been proposed to address this limitation, enabling LLMs to maintain conversational continuity. However, existing approaches struggle with two key challenges. First, rigid memory granularity fails to capture the natural semantic structure of conversations, leading to fragmented and incomplete representations. Second, fixed retrieval mechanisms cannot adapt to diverse dialogue contexts and user interaction patterns. In this work, we propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections: (1) Prospective Reflection, which dynamically summarizes interactions across granularities—utterances, turns, and sessions—into a personalized memory bank for effective future retrieval, and (2) Retrospective Reflection, which iteratively refines the retrieval in an online reinforcement learning (RL) manner based on LLMs’ cited evidence. Experiments show that RMM demonstrates consistent improvement across various metrics and benchmarks. For example, RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
pdf
bib
abs
SCALE: Towards Collaborative Content Analysis in Social Science with Large Language Model Agents and Human Intervention
Chengshuai Zhao
|
Zhen Tan
|
Chau-Wai Wong
|
Xinyan Zhao
|
Tianlong Chen
|
Huan Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Content analysis breaks down complex and unstructured texts into theory-informed numerical categories. Particularly, in social science, this process usually relies on multiple rounds of manual annotation, domain expert discussion, and rule-based refinement. In this paper, we introduce SCALE, a novel multi-agent framework that effectively ̲Simulates ̲Content ̲Analysis via ̲Large language model (LLM) ag ̲Ents. SCALE imitates key phases of content analysis, including text coding, collaborative discussion, and dynamic codebook evolution, capturing the reflective depth and adaptive discussions of human researchers. Furthermore, by integrating diverse modes of human intervention, SCALE is augmented with expert input to further enhance its performance. Extensive evaluations on real-world datasets demonstrate that SCALE achieves human-approximated performance across various complex content analysis tasks, offering an innovative potential for future social science research.
pdf
bib
abs
Agents Under Siege: Breaking Pragmatic Multi-Agent LLM Systems with Optimized Prompt Attacks
Rana Shahroz
|
Zhen Tan
|
Sukwon Yun
|
Charles Fleming
|
Tianlong Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Most discussions about Large Language Model (LLM) safety have focused on single-agent settings but multi-agent LLM systems now create novel adversarial risks because their behavior depends on communication between agents and decentralized reasoning. In this work, we innovatively focus on attacking pragmatic systems that have constrains such as limited token bandwidth, latency between message delivery, and defense mechanisms. We design a permutation-invariant adversarial attack that optimizes prompt distribution across latency and bandwidth-constraint network topologies to bypass distributed safety mechanisms within the system. Formulating the attack path as a problem of maximum-flow minimum-cost, coupled with the novel Permutation-Invariant Evasion Loss (PIEL), we leverage graph-based optimization to maximize attack success rate while minimizing detection risk. Evaluating across models including Llama, Mistral, Gemma, DeepSeek and other variants on various datasets like JailBreakBench and AdversarialBench, our method outperforms conventional attacks by up to 7×, exposing critical vulnerabilities in multi-agent systems. Moreover, we demonstrate that existing defenses, including variants of Llama-Guard and PromptGuard, fail to prohibit our attack, emphasizing the urgent need for multi-agent specific safety mechanisms.
pdf
bib
abs
SConU: Selective Conformal Uncertainty in Large Language Models
Zhiyuan Wang
|
Qingni Wang
|
Yue Zhang
|
Tianlong Chen
|
Xiaofeng Zhu
|
Xiaoshuang Shi
|
Kaidi Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
As large language models are increasingly utilized in real-world applications, guarantees of task-specific metrics are essential for their reliable deployment. Previous studies have introduced various criteria of conformal uncertainty grounded in split conformal prediction, which offer user-specified correctness coverage. However, existing frameworks often fail to identify uncertainty data outliers that violate the exchangeability assumption, leading to unbounded miscoverage rates and unactionable prediction sets. In this paper, we propose a novel approach termed Selective Conformal Uncertainty (SConU), which, for the first time, implements significance tests, by developing two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level. Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions. Furthermore, we comprehensively analyze the components of the conformal procedures, aiming to approximate conditional coverage, particularly in high-stakes question-answering tasks.
pdf
bib
abs
The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit
Huixue Zhou
|
Hengrui Gu
|
Zaifu Zhan
|
Xi Liu
|
Kaixiong Zhou
|
Yongkang Xiao
|
Mingfu Liang
|
Srinivas Prasad Govindan
|
Piyush Chawla
|
Jiyan Yang
|
Xiangfei Meng
|
Huayu Li
|
Buyun Zhang
|
Liang Luo
|
Wen-Yen Chen
|
Yiping Han
|
Bo Long
|
Rui Zhang
|
Tianlong Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The deployment of Large Language Models (LLMs) in recommender systems for Click-Through Rate (CTR) prediction requires a careful balance between computational efficiency and predictive accuracy. This paper introduces OptiRAG-Rec, a comprehensive framework that integrates Retrieval-Augmented Generation (RAG) with a novel multi-head early exit architecture to address both challenges. By leveraging Graph Convolutional Networks (GCNs) as efficient retrieval mechanisms, the framework significantly reduces data retrieval times while maintaining high model performance. Additionally, the multi-head early exit strategy dynamically terminates inference based on real-time predictive confidence assessments, enhancing responsiveness without sacrificing accuracy. Experimental results demonstrate that OptiRAG-Rec reduces computation time while preserving the precision required for reliable recommendations, establishing a new benchmark for efficient and accurate LLM deployment in recommendation.
pdf
bib
abs
UQ-Merge: Uncertainty Guided Multimodal Large Language Model Merging
Huaizhi Qu
|
Xinyu Zhao
|
Jie Peng
|
Kwonjoon Lee
|
Behzad Dariush
|
Tianlong Chen
Findings of the Association for Computational Linguistics: ACL 2025
Multimodal Large Language Models (MLLMs) have gained increasing popularity as a promising framework for leveraging the strong language reasoning capabilities in the vision-language domain. Given a wide range of MLLMs, model merging potentially offers a cheap way to aggregate their diverse knowledge into a single MLLM. However, directly plug-in existing model merging approaches often leads to suboptimal performance due to (1) inclusion of harmful models that have over-confident predictions in the target task; (2) the lack of specialized designs for vision-language inputs. To tackle these pain points, we conduct pioneering investigations to dissect the merging procedures and propose an uncertainty-guided MLLM merging algorithm, i.e., UQ-Merge, which i) identifies beneficial candidates for merging, ii) determines the merging order and the number of helpful candidates, and iii) performs appropriate merging. Within our framework, we consider uncertainty quantification on both text and vision inputs to examine the MLLM prediction confidence, and then decide whether and when a MLLM needs to be included. It is worth mentioning that our vision-language uncertainty quantification does not require access to sample labels, making it more practical in various scenarios. Extensive experiments consistently demonstrate the superior MLLM merging performance of UQ-Merge in both held-in and held-out vision-language benchmarks. For example, compared to existing state-of-the-art merging methods, UQ-Merge brings substantial performance improvements of up to 44.3% on average accuracy in 12 datasets. Codes are available at https://anonymous.4open.science/r/UQ-Merge-7CD7.
pdf
bib
abs
GRNFormer: A Biologically-Guided Framework for Integrating Gene Regulatory Networks into RNA Foundation Models
Mufan Qiu
|
Xinyu Hu
|
Fengwei Zhan
|
Sukwon Yun
|
Jie Peng
|
Ruichen Zhang
|
Bhavya Kailkhura
|
Jiekun Yang
|
Tianlong Chen
Findings of the Association for Computational Linguistics: ACL 2025
Foundation models for single-cell RNA sequencing (scRNA-seq) have shown promising capabilities in capturing gene expression patterns. However, current approaches face critical limitations: they ignore biological prior knowledge encoded in gene regulatory relationships and fail to leverage multi-omics signals that could provide complementary regulatory insights. In this paper, we propose GRNFormer, a new framework that systematically integrates multi-scale Gene Regulatory Networks (GRNs) inferred from multi-omics data into RNA foundation model training. Our framework introduces two key innovations. First, we introduce a pipeline for constructing hierarchical GRNs that capture regulatory relationships at both cell-type-specific and cell-specific resolutions. Second, we design a structure-aware integration framework that addresses the information asymmetry in GRNs through two technical advances: (1) A graph topological adapter using multi-head cross-attention to weight regulatory relationships dynamically, and (2) a novel edge perturbation strategy that perturb GRNs with biologically-informed co-expression links to augment graph neural network training. Comprehensive experiments have been conducted on three representative downstream tasks across multiple model architectures to demonstrate the effectiveness of GRNFormer. It achieves consistent improvements over state-of-the-art (SoTA) baselines: 3.6\\% increase in drug response prediction correlation, 9.6\\% improvement in single-cell drug classification AUC, and 1.1\\% average gain in gene perturbation prediction accuracy.
pdf
bib
abs
Vision Language Model Helps Private Information De-Identification in Vision Data
Tiejin Chen
|
Pingzhi Li
|
Kaixiong Zhou
|
Tianlong Chen
|
Hua Wei
Findings of the Association for Computational Linguistics: ACL 2025
Visual Language Models (VLMs) have gained significant popularity due to their remarkable ability. While various methods exist to enhance privacy in text-based applications, privacy risks associated with visual inputs remain largely overlooked such as Protected Health Information (PHI) in medical images. To tackle this problem, two key tasks: accurately localizing sensitive text and processing it to ensure privacy protection should be performed. To address this issue, we introduce VisShield (Vision Privacy Shield), an end-to-end framework designed to enhance the privacy awareness of VLMs. Our framework consists of two key components: a specialized instruction-tuning dataset OPTIC (Optical Privacy Text Instruction Collection) and a tailored training methodology. The dataset provides diverse privacy-oriented prompts that guide VLMs to perform targeted Optical Character Recognition (OCR) for precise localization of sensitive text, while the training strategy ensures effective adaptation of VLMs to privacy-preserving tasks. Specifically, our approach ensures that VLMs recognize privacy-sensitive text and output precise bounding boxes for detected entities, allowing for effective masking of sensitive information. Extensive experiments demonstrate that our framework significantly outperforms existing approaches in handling private information, paving the way for privacy-preserving applications in vision-language models.
pdf
bib
abs
Unveiling Privacy Risks in Multi-modal Large Language Models: Task-specific Vulnerabilities and Mitigation Challenges
Tiejin Chen
|
Pingzhi Li
|
Kaixiong Zhou
|
Tianlong Chen
|
Hua Wei
Findings of the Association for Computational Linguistics: ACL 2025
Privacy risks in text-only Large Language Models (LLMs) are well studied, particularly their tendency to memorize and leak sensitive information. However, Multi-modal Large Language Models (MLLMs), which process both text and images, introduce unique privacy challenges that remain underexplored. Compared to text-only models, MLLMs can extract and expose sensitive information embedded in images, posing new privacy risks. We reveal that some MLLMs are susceptible to privacy breaches, leaking sensitive data embedded in images or stored in memory. Specifically, in this paper, we (1) introduce MM-Privacy, a comprehensive dataset designed to assess privacy risks across various multi-modal tasks and scenarios, where we define Disclosure Risks and Retention Risks. (2) systematically evaluate different MLLMs using MM-Privacy and demonstrate how models leak sensitive data across various tasks, and (3) provide additional insights into the role of task inconsistency in privacy risks, emphasizing the urgent need for mitigation strategies. Our findings highlight privacy concerns in MLLMs, underscoring the necessity of safeguards to prevent data exposure. Part of our dataset and code can be found here.
pdf
bib
abs
Spatial Coordinates as a Cell Language: A Multi-Sentence Framework for Imaging Mass Cytometry Analysis
Chi-Jane Chen
|
Yuhang Chen
|
Sukwon Yun
|
Natalie Stanley
|
Tianlong Chen
Findings of the Association for Computational Linguistics: ACL 2025
Image mass cytometry (IMC) enables high-dimensional spatial profiling by combining mass cytometry’s analytical power with spatial distributions of cell phenotypes. Recent studies leverage large language models (LLMs) to extract cell states by translating gene or protein expression into biological context. However, existing single-cell LLMs face two major challenges: (1) Integration of spatial information—they struggle to generalize spatial coordinates and effectively encode spatial context as text, and (2) Treating each cell independently—they overlook cell-cell interactions, limiting their ability to capture biological relationships. To address these limitations, we propose Spatial2Sentence, a novel framework that integrates both single-cell expression and spatial information into natural language using a multi-sentence approach. Given an expression matrix and spatial coordinates, Spatial2Sentence constructs expression similarity and distance matrices, pairing spatially adjacent and expressionally similar cells as positive pairs while using distant and dissimilar cells as negatives. These multi-sentence representations are processed by LLMs, enabling them to learn cellular interactions in both expression and spatial contexts. Equipped with multi-task learning, Spatial2Sentence outperforms existing single-cell LLMs on preprocessed IMC datasets for diabetes and brain tumors, improving cell-type classification by 5.98% and clinical status prediction by 4.18% on the diabetes dataset while enhancing interpretability. The source code can be found here:
https://github.com/UNITES-Lab/Spatial2Sentence.
pdf
bib
abs
GuideLLM: Exploring LLM-Guided Conversation with Applications in Autobiography Interviewing
Jinhao Duan
|
Xinyu Zhao
|
Zhuoxuan Zhang
|
Eunhye Grace Ko
|
Lily Boddy
|
Chenan Wang
|
Tianhao Li
|
Alexander Rasgon
|
Junyuan Hong
|
Min Kyung Lee
|
Chenxi Yuan
|
Qi Long
|
Ying Ding
|
Tianlong Chen
|
Kaidi Xu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations—where LLMs direct the discourse and steer the conversation’s objectives—remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
pdf
bib
Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design
Mohan Zhang
|
Pingzhi Li
|
Jie Peng
|
Mufan Qiu
|
Tianlong Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
pdf
bib
abs
BPO: Towards Balanced Preference Optimization between Knowledge Breadth and Depth in Alignment
Sizhe Wang
|
Yongqi Tong
|
Hengyuan Zhang
|
Dawei Li
|
Xin Zhang
|
Tianlong Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Reinforcement Learning with Human Feedback (RLHF) is the key to the success of large language models (LLMs) in recent years. In this work, we first introduce the concepts of knowledge breadth and knowledge depth, which measure the comprehensiveness and depth of an LLM or knowledge source respectively. We reveal that the imbalance in the number of prompts and responses can lead to a potential disparity in breadth and depth learning within alignment tuning datasets by showing that even a simple uniform method for balancing the number of instructions and responses can lead to significant improvements. Building on this, we further propose Balanced Preference Optimization (BPO), designed to dynamically augment the knowledge depth of each sample. BPO is motivated by the observation that the usefulness of knowledge varies across samples, necessitating tailored learning of knowledge depth. To achieve this, we introduce gradient-based clustering, estimating the knowledge informativeness and usefulness of each augmented sample based on the model’s optimization direction. Our experimental results across various benchmarks demonstrate that BPO outperforms other baseline methods in alignment tuning while maintaining training efficiency. Furthermore, we conduct a detailed analysis of each component of BPO, providing guidelines for future research in preference data optimization.
pdf
bib
abs
Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense
Yang Ouyang
|
Hengrui Gu
|
Shuhang Lin
|
Wenyue Hua
|
Jie Peng
|
Bhavya Kailkhura
|
Meijun Gao
|
Tianlong Chen
|
Kaixiong Zhou
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then “unlearn” these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model’s responses to safe queries intact.We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak attacks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods. Our code is publicly available at: https://github.com/oyy2000/LayerAdvPatcher
2024
pdf
bib
abs
Glue pizza and eat rocks - Exploiting Vulnerabilities in Retrieval-Augmented Generative Models
Zhen Tan
|
Chengshuai Zhao
|
Raha Moraffah
|
Yifan Li
|
Song Wang
|
Jundong Li
|
Tianlong Chen
|
Huan Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs) by integrating external knowledge bases, improving their performance in applications like fact-checking and information searching. In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases by injecting deceptive content into the retrieval database, intentionally changing the model’s behavior. This threat is critical as it mirrors real-world usage scenarios where RAG systems interact with publicly accessible knowledge bases, such as web scrapings and user-contributed data pools. To be more realistic, we target a realistic setting where the adversary has no knowledge of users’ queries, knowledge base data, and the LLM parameters. We demonstrate that it is possible to exploit the model successfully through crafted content uploads with access to the retriever. Our findings emphasize an urgent need for security measures in the design and deployment of RAG systems to prevent potential manipulation and ensure the integrity of machine-generated content.
pdf
bib
abs
FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping
Ajay Kumar Jaiswal
|
Bodun Hu
|
Lu Yin
|
Yeonju Ro
|
Tianlong Chen
|
Shiwei Liu
|
Aditya Akella
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges for autoregressive token-by-token generation. To mitigate computation overload incurred during generation, several early-exit and layer-dropping strategies have been proposed. Despite some promising success due to the redundancy across LLMs layers on metrics like Rough-L/BLUE, our careful knowledge-intensive evaluation unveils issues such as generation collapse, hallucination, and noticeable performance drop even at the trivial exit ratio of ~10-15% of layers. We attribute these errors primarily to ineffective handling of the KV cache through state copying during early exit. In this work, we observe the saturation of computationally expensive feed-forward blocks of LLM layers and propose FFN-SkipLLM, which is a novel fine-grained skip strategy for autoregressive LLMs. FFN-SkipLLM leverages an input-adaptive feed-forward skipping approach that can skip ~25-30% of FFN blocks of LLMs with marginal change in performance on knowledge-intensive generation tasks without any requirement to handle the KV cache. Our extensive experiments and ablation studies across benchmarks like MT-Bench, Factoid-QA, and variable-length text summarization illustrate how our simple and easy-to-use method can facilitate faster autoregressive decoding.
pdf
bib
abs
Is C4 Dataset Optimal for Pruning? An Investigation of Calibration Data for LLM Pruning
Abhinav Bandari
|
Lu Yin
|
Cheng-Yu Hsieh
|
Ajay Kumar Jaiswal
|
Tianlong Chen
|
Li Shen
|
Ranjay Krishna
|
Shiwei Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Network pruning has emerged as a potential solution to make LLMs cheaper to deploy. However, existing LLM pruning approachesuniversally rely on the C4 dataset as the calibration data for calculating pruning scores, leaving its optimality unexplored. In this study, we evaluate the choice of calibration data on LLM pruning, across a wide range of datasets that are most commonly used in LLM training and evaluation, including four pertaining datasets as well as three categories of downstream tasks encompassing nine datasets. Each downstream dataset is prompted with In-Context Learning (ICL) and Chain-of-Thought (CoT), respectively. Besides the already intriguingobservation that the choice of calibration data significantly impacts the performance of pruned LLMs, our results also uncover several subtle and often unexpected findings, summarized as follows: (1) C4 is not the optimal choice for LLM pruning, even among commonly used pre-training datasets; (2) arithmetic datasets—when used as calibration data—performs on par or even better than pre-training datasets; (3) pruning with downstream datasets does not necessarily help the corresponding downstream task, compared to pre-training data; (4) ICL is widely beneficial to all data categories, whereas CoT is only useful on certain tasks. Our findings shed light on the importance of carefully selecting calibration data for LLM pruning and pave the way for more efficient deployment of these powerfulmodels in real-world applications. We release our code at: https://github.com/abx393/llm-pruning-calibration-data.
pdf
bib
abs
Contextualization Distillation from Large Language Model for Knowledge Graph Completion
Dawei Li
|
Zhen Tan
|
Tianlong Chen
|
Huan Liu
Findings of the Association for Computational Linguistics: EACL 2024
While textual information significantly enhances the performance of pre-trained language models (PLMs) in knowledge graph completion (KGC), the static and noisy nature of existing corpora collected from Wikipedia articles or synsets definitions often limits the potential of PLM-based KGC models. To surmount these challenges, we introduce the Contextualization Distillation strategy, a versatile plug-in-and-play approach compatible with both discriminative and generative KGC frameworks. Our method begins by instructing large language models (LLMs) to transform compact, structural triplets into context-rich segments. Subsequently, we introduce two tailored auxiliary tasks—reconstruction and contextualization—allowing smaller KGC models to assimilate insights from these enriched triplets. Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach, revealing consistent performance enhancements irrespective of underlying pipelines or architectures. Moreover, our analysis makes our method more explainable and provides insight into how to generate high-quality corpora for KGC, as well as the selection of suitable distillation tasks.
pdf
bib
abs
DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer’s Disease Questions with Scientific Literature
Dawei Li
|
Shu Yang
|
Zhen Tan
|
Jae Young Baik
|
Sukwon Yun
|
Joseph Lee
|
Aaron Chacko
|
Bojian Hou
|
Duy Duong-Tran
|
Ying Ding
|
Huan Liu
|
Li Shen
|
Tianlong Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specialized domains. In this work, we introduce DALK, a.k.a. Dynamic Co-Augmentation of LLMs and KG, to address this limitation and demonstrate its ability on studying Alzheimer’s Disease (AD), a specialized sub-field in biomedicine and a global health priority. With a synergized framework of LLM and KG mutually enhancing each other, we first leverage LLM to construct an evolving AD-specific knowledge graph (KG) sourced from AD-related scientific literature, and then we utilize a coarse-to-fine sampling method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the KG to augment LLM inference capabilities. The experimental results, conducted on our constructed AD question answering (ADQA) benchmark, underscore the efficacy of DALK. Additionally, we perform a series of detailed analyses that can offer valuable insights and guidelines for the emerging topic of mutually enhancing KG and LLM.
pdf
bib
abs
Cross-Lingual Multi-Hop Knowledge Editing
Aditi Khandelwal
|
Harman Singh
|
Hengrui Gu
|
Tianlong Chen
|
Kaixiong Zhou
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) are often expected to be constantly adapted to new sources of knowledge and knowledge editing techniques aim to efficiently patch the outdated model knowledge, with minimal modification. Most prior works focus on monolingual knowledge editing in English, even though new information can emerge in any language from any part of the world. We propose the Cross-Lingual Multi-Hop Knowledge Editing paradigm, for measuring and analyzing the performance of various SoTA knowledge editing techniques in a cross-lingual setup. Specifically, we create a parallel cross-lingual benchmark, CroLin-MQuAKE for measuring the knowledge editing capabilities. Our extensive analysis over various knowledge editing techniques uncover significant gaps in performance between the cross-lingual and English-centric setting. Following this, we propose a significantly improved system for cross-lingual multi-hop knowledge editing, CLeVer-CKE. CLeVer-CKE is based on a retrieve, verify and generate knowledge editing framework, where a retriever is formulated to recall edited facts and support an LLM to adhere to knowledge edits. We develop language-aware and hard-negative based contrastive losses for improving the cross-lingual and fine-grained fact retrieval and verification process used within this framework. Extensive experiments across three LLMs, eight languages, and two datasets show the CLeVer-CKE’s significant gains of up to 30% over prior methods.
pdf
bib
abs
ReTA: Recursively Thinking Ahead to Improve the Strategic Reasoning of Large Language Models
Jinhao Duan
|
Shiqi Wang
|
James Diffenderfer
|
Lichao Sun
|
Tianlong Chen
|
Bhavya Kailkhura
|
Kaidi Xu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Current logical reasoning evaluations of Large Language Models (LLMs) primarily focus on single-turn and static environments, such as arithmetic problems. The crucial problem of multi-turn, strategic reasoning is under-explored. In this work, we analyze the multi-turn strategic reasoning of LLMs through text-driven complete- and incomplete-information gaming, e.g., board games (Tic-Tac-Toe, Connect-4) and poker games (Texas Hold’em Poker). Specifically, we consider two distinct scenarios: 1) Online Racing, featuring multiple LLMs/agents to facilitate direct competition and comparison; 2) Offline Probing, constructing targeted questions with verified ground truth to evaluate LLMs’ strategic behaviors. Experimental results demonstrate that existing state-of-the-art LLMs and reasoning schemes are largely ineffective for strategic reasoning tasks. To mitigate these limitations, we propose a simple yet effective Recursively Thinking-Ahead (ReTA) agent, incorporating a recursive prompting mechanism that automatically analyzes the opponents’ future moves/actions and assigns reward signals for these situations, to strengthen the strategic reasoning of LLMs. We hope our work could spur further research and exploration in the multi-turn strategic reasoning of LLMs. The code is available at https://github.com/jinhaoduan/ReTA.
pdf
bib
abs
Reinforcement Learning-Driven LLM Agent for Automated Attacks on LLMs
Xiangwen Wang
|
Jie Peng
|
Kaidi Xu
|
Huaxiu Yao
|
Tianlong Chen
Proceedings of the Fifth Workshop on Privacy in Natural Language Processing
Recently, there has been a growing focus on conducting attacks on large language models (LLMs) to assess LLMs’ safety. Yet, existing attack methods face challenges, including the need to access model weights or merely ensuring LLMs output harmful information without controlling the specific content of their output. Exactly control of the LLM output can produce more inconspicuous attacks which could reveal a new page for LLM security. To achieve this, we propose RLTA: the Reinforcement Learning Targeted Attack, a framework that is designed for attacking language models (LLMs) and is adaptable to both white box (weight accessible) and black box (weight inaccessible) scenarios. It is capable of automatically generating malicious prompts that trigger target LLMs to produce specific outputs. We demonstrate RLTA in two different scenarios: LLM trojan detection and jailbreaking. The comprehensive experimental results show the potential of RLTA in enhancing the security measures surrounding contemporary LLMs.
2023
pdf
bib
abs
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
Xuxi Chen
|
Tianlong Chen
|
Weizhu Chen
|
Ahmed Hassan Awadallah
|
Zhangyang Wang
|
Yu Cheng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Gigantic pre-trained models have become central to natural language processing (NLP), serving as the starting point for fine-tuning towards a range of downstream tasks. However, two pain points persist for this paradigm: (a) as the pre-trained models grow bigger (e.g., 175B parameters for GPT-3), even the fine-tuning process can be time-consuming and computationally expensive; (b) the fine-tuned model has the same size as its starting point by default, which is neither sensible due to its more specialized functionality, nor practical since many fine-tuned models will be deployed in resource-constrained environments. To address these pain points, we propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights. Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning - by enforcing sparsity-aware low-rank updates on top of the pre-trained weights; and (ii) resource-efficient inference - by encouraging a sparse weight structure towards the final fine-tuned model. We leverage sparsity in these two directions by exploiting both unstructured and structured sparse patterns in pre-trained language models viaa unified approach. Extensive experiments and in-depth investigations, with diverse network backbones (i.e., BERT, RoBERTa, and GPT-2) on dozens of datasets, consistently demonstrate impressive parameter-/inference-efficiency, while maintaining competitive downstream performance. For instance, DSEE saves about 25% inference FLOPs while achieving comparable performance, with 0.5% trainable parameters on BERT. Codes are available at
https://github.com/VITA-Group/DSEE.
2020
pdf
bib
abs
Dataset and Enhanced Model for Eligibility Criteria-to-SQL Semantic Parsing
Xiaojing Yu
|
Tianlong Chen
|
Zhengjie Yu
|
Huiyu Li
|
Yang Yang
|
Xiaoqian Jiang
|
Anxiao Jiang
Proceedings of the Twelfth Language Resources and Evaluation Conference
Clinical trials often require that patients meet eligibility criteria (e.g., have specific conditions) to ensure the safety and the effectiveness of studies. However, retrieving eligible patients for a trial from the electronic health record (EHR) database remains a challenging task for clinicians since it requires not only medical knowledge about eligibility criteria, but also an adequate understanding of structured query language (SQL). In this paper, we introduce a new dataset that includes the first-of-its-kind eligibility-criteria corpus and the corresponding queries for criteria-to-sql (Criteria2SQL), a task translating the eligibility criteria to executable SQL queries. Compared to existing datasets, the queries in the dataset here are derived from the eligibility criteria of clinical trials and include Order-sensitive, Counting-based, and Boolean-type cases which are not seen before. In addition to the dataset, we propose a novel neural semantic parser as a strong baseline model. Extensive experiments show that the proposed parser outperforms existing state-of-the-art general-purpose text-to-sql models while highlighting the challenges presented by the new dataset. The uniqueness and the diversity of the dataset leave a lot of research opportunities for future improvement.