Thanh-Nhi Nguyen


2025

pdf bib
Statement-Tuning Enables Efficient Cross-lingual Generalization in Encoder-only Models
Ahmed Elshabrawy | Thanh-Nhi Nguyen | Yeeun Kang | Lihan Feng | Annant Jain | Faadil Abdullah Shaikh | Jonibek Mansurov | Mohamed Fazli Mohamed Imam | Jesus-German Ortiz-Barajas | Rendi Chevi | Alham Fikri Aji
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) excel in zero-shot and few-shot tasks, but achieving similar performance with encoder-only models like BERT and RoBERTa has been challenging due to their architecture. However, encoders offer advantages such as lower computational and memory costs. Recent work adapts them for zero-shot generalization using Statement Tuning, which reformulates tasks into finite templates. We extend this approach to multilingual NLP, exploring whether encoders can achieve zero-shot cross-lingual generalization and serve as efficient alternatives to memory-intensive LLMs for low-resource languages. Our results show that state-of-the-art encoder models generalize well across languages, rivaling multilingual LLMs while being more efficient. We also analyze multilingual Statement Tuning dataset design, efficiency gains, and language-specific generalization, contributing to more inclusive and resource-efficient NLP models. We release our code and models.

2024

pdf bib
ViLexNorm: A Lexical Normalization Corpus for Vietnamese Social Media Text
Thanh-Nhi Nguyen | Thanh-Phong Le | Kiet Nguyen
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Lexical normalization, a fundamental task in Natural Language Processing (NLP), involves the transformation of words into their canonical forms. This process has been proven to benefit various downstream NLP tasks greatly. In this work, we introduce Vietnamese Lexical Normalization (ViLexNorm), the first-ever corpus developed for the Vietnamese lexical normalization task. The corpus comprises over 10,000 pairs of sentences meticulously annotated by human annotators, sourced from public comments on Vietnam’s most popular social media platforms. Various methods were used to evaluate our corpus, and the best-performing system achieved a result of 57.74% using the Error Reduction Rate (ERR) metric (van der Goot, 2019a) with the Leave-As-Is (LAI) baseline. For extrinsic evaluation, employing the model trained on ViLexNorm demonstrates the positive impact of the Vietnamese lexical normalization task on other NLP tasks. Our corpus is publicly available exclusively for research purposes.