This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The quality of Supervised Fine-Tuning (SFT) data plays a critical role in enhancing the conversational capabilities of Large Language Models (LLMs). However, the availability of high-quality human-annotated SFT data has become a significant bottleneck for LLMs, necessitating a greater reliance on synthetic training data. In this work, we introduce Condor, a two-stage synthetic data generation framework that incorporates World Knowledge Trees and Self-Reflection Refinement to produce high-quality SFT data at scale. Our experimental results demonstrate that a base model fine-tuned on only 20K Condor-generated samples achieves superior performance compared to instruct model trained with RLHF. The additional refinement stage in Condor further enables iterative self-improvement for LLMs at various scales (up to 72B), validating the effectiveness of our approach. Furthermore, our investigation into the scaling of synthetic data in post-training reveals substantial unexplored potential for performance improvements, opening promising avenues for future research.
Scaling law builds the relationship between training computation and validation loss, enabling researchers to effectively predict the loss trending of models across different levels of computation. However, a gap still remains between validation loss and the model’s downstream capabilities, making it untrivial to apply scaling law to direct performance prediction for downstream tasks. The loss typically represents a cumulative penalty for predicted tokens, which are implicitly considered to have equal importance. Nevertheless, our studies have shown evidence that when considering different training data distributions, we cannot directly model the relationship between downstream capability and computation or token loss. To bridge the gap between validation loss and downstream task capabilities, in this work, we introduce Capability Salience Vector, which decomposes the overall loss and assigns different importance weights to tokens to assess a specific meta-capability, aligning the validation loss with downstream task performance in terms of the model’s capabilities. Experiments on various popular benchmarks demonstrate that our proposed Capability Salience Vector could significantly improve the predictability of language model performance on downstream tasks.
We introduce InternLM-Law, a large language model (LLM) tailored for addressing diverse legal tasks related to Chinese laws. These tasks range from responding to standard legal questions (e.g., legal exercises in textbooks) to analyzing complex real-world legal situations. Our work contributes to Chinese Legal NLP research by (1) conducting one of the most extensive evaluations of state-of-the-art general-purpose and legal-specific LLMs to date that involves an automatic evaluation on the 20 legal NLP tasks in LawBench, a human evaluation on a challenging version of the Legal Consultation task, and an automatic evaluation of a model’s ability to handle very long legal texts; (2) presenting a methodology for training a Chinese legal LLM that offers superior performance to all of its counterparts in our extensive evaluation; and (3) facilitating future research in this area by making all of our code and model publicly available at https://github.com/InternLM/InternLM-Law.
We introduce OpenHuEval, the first benchmark for LLMs focusing on the Hungarian language and specifics. OpenHuEval is constructed from a vast collection of Hungarian-specific materials sourced from multiple origins. In the construction, we incorporated the latest design principles for evaluating LLMs, such as using real user queries from the internet, emphasizing the assessment of LLMs’ generative capabilities, and employing LLM-as-judge to enhance the multidimensionality and accuracy of evaluations. Ultimately, OpenHuEval encompasses eight Hungarian-specific dimensions, featuring five tasks and 3953 questions. Consequently, OpenHuEval provides the comprehensive, in-depth, and scientifically accurate assessment of LLM performance in the context of the Hungarian language and its specifics. We evaluated current mainstream LLMs, including both traditional LLMs and recently developed Large Reasoning Models. The results demonstrate the significant necessity for evaluation and model optimization tailored to the Hungarian language and specifics. We also established the framework for analyzing the thinking processes of LRMs with OpenHuEval, revealing intrinsic patterns and mechanisms of these models in non-English languages, with Hungarian serving as a representative example. We will release OpenHuEval at https://github.com/opendatalab/OpenHuEval .
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce **G-Pass@**k, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model’s performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@k in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
Large language models (LLMs) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool-utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available.
We introduce CHARM, the first benchmark for comprehensively and in-depth evaluating the commonsense reasoning ability of large language models (LLMs) in Chinese, which covers both globally known and Chinese-specific commonsense. We evaluated 7 English and 12 Chinese-oriented LLMs on CHARM, employing 5 representative prompt strategies for improving LLMs’ reasoning ability, such as Chain-of-Thought. Our findings indicated that the LLM’s language orientation and the task’s domain influence the effectiveness of the prompt strategy, which enriches previous research findings. We built closely-interconnected reasoning and memorization tasks, and found that some LLMs struggle with memorizing Chinese commonsense, affecting their reasoning ability, while others show differences in reasoning despite similar memorization performance. We also evaluated the LLMs’ memorization-independent reasoning abilities and analyzed the typical errors. Our study precisely identified the LLMs’ strengths and weaknesses, providing the clear direction for optimization. It can also serve as a reference for studies in other fields. We will release CHARM at https://github.com/opendatalab/CHARM.
We present LawBench, the first evaluation benchmark composed of 20 tasks aimed to assess the ability of Large Language Models (LLMs) to perform Chinese legal-related tasks. LawBench is meticulously crafted to enable precise assessment of LLMs’ legal capabilities from three cognitive levels that correspond to the widely accepted Bloom’s cognitive taxonomy. Using LawBench, we present a comprehensive evaluation of 21 popular LLMs and the first comparative analysis of the empirical results in order to reveal their relative strengths and weaknesses. All data, model predictions and evaluation code are accessible from https://github.com/open-compass/LawBench.
In the realm of modern Large Language Models (LLMs), facilitating high-quality, multi-turn dialogues with humans represents a cornerstone feature. However, human-based evaluation of such a capability involves substantial manual effort. This study offers a formative assessment of current LLMs’ proficiency in emulating human-like, multi-turn conversations using an LLM-centric approach. The evaluation encompasses three key elements in the evaluation pipeline: utterance generation, evaluation protocol, and judgement, and we delve deeply into each aspect. GPT-4, both as an utterance generator and as a judge, exhibits exceptional performance. As a generator, GPT-4 crafts dialogues indistinguishable from human interactions in terms of style and flow. When judging, it shows a heightened alignment with human evaluative standards and consistency. Conversely, other LLMs face challenges in producing quality multi-turn dialogues, hindered by inadequate instruction-following abilities, a propensity for prolix utterances, and overall limited capabilities. Notably, generating extensive dialogues (e.g., spanning tens of turns) remains a formidable task for most LLMs, particularly in Chinese contexts. We hope that our work can serve as a valuable resource for evaluating the multi-turn chatting capabilities of LLMs. Related resources are available at https://github.com/open-compass/BotChat.
Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, which fall short in providing a holistic assessment of the LLMs’ math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model’s mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs’ mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context.
We introduces ***LLaST***, a framework for building high-performance Large Language model based Speech-to-text Translation systems. We address the limitations of end-to-end speech translation (E2E ST) models by exploring model architecture design and optimization techniques tailored for LLMs. Our approach includes LLM-based speech translation architecture design, ASR-augmented training, multilingual data augmentation, and dual-LoRA optimization. Our approach demonstrates superior performance on the CoVoST-2 benchmark and showcases exceptional scaling capabilities powered by LLMs.We believe this effective method will serve as a strong baseline for speech translation and provide insights for futureimprovements of the LLM-based speech translation framework.
Large language models (LLMs) have demonstrated impressive capabilities across various tasks, but their performance is highly sensitive to the prompts utilized. This variability poses challenges for accurate assessment and user satisfaction. Current research frequently overlooks instance-level prompt variations and their implications on subjective evaluations. To address these shortcomings, we introduce ProSA, a framework designed to evaluate and comprehend prompt sensitivity in LLMs. ProSA incorporates a novel sensitivity metric, PromptSensiScore, and leverages decoding confidence to elucidate underlying mechanisms. Our extensive study, spanning multiple tasks, uncovers that prompt sensitivity fluctuates across datasets and models, with larger models exhibiting enhanced robustness. We observe that few-shot examples can alleviate this sensitivity issue, and subjective evaluations are also susceptible to prompt sensitivities, particularly in complex, reasoning-oriented tasks. Furthermore, our findings indicate that higher model confidence correlates with increased prompt robustness. We believe this work will serve as a helpful tool in studying prompt sensitivity of LLMs. The project is released at: https://github.com/open-compass/ProSA.
Recently, the large language model (LLM) community has shown increasing interest in enhancing LLMs’ capability to handle extremely long documents. As various long-text techniques and model architectures emerge, the precise and detailed evaluation of models’ long-text capabilities has become increasingly important. Existing long-text evaluation benchmarks, such as L-Eval and LongBench, construct long-text test sets based on open-source datasets, focusing mainly on QA and summarization tasks. These datasets include test samples of varying lengths (from 2k to 32k+) entangled together, making it challenging to assess model capabilities across different length ranges. Moreover, they do not cover the ultralong settings (100k+ tokens) that the latest LLMs claim to achieve. In this paper, we introduce Ada-LEval, a length-adaptable benchmark for evaluating the long-context understanding of LLMs. Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs’ long context capabilities. These benchmarks support intricate manipulation of the length of test cases, and can easily produce text samples up to 128k tokens. We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval. The evaluation results demonstrate the limitations of current LLMs, especially in ultra-long-context settings. Our code is available at https://github.com/open-compass/Ada-LEval.
The growing awareness of safety concerns in large language models (LLMs) has sparked considerable interest in the evaluation of safety. This study investigates an under-explored issue about the evaluation of LLMs, namely the substantial discrepancy in performance between multiple-choice questions and open-ended questions. Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization. That is, LLM only remembers the answer style for open-ended safety questions, which makes it unable to solve other forms of safety tests. We refer to this phenomenon as fake alignment and construct a comparative benchmark to empirically verify its existence in LLMs. We introduce a Fake alIgNment Evaluation (FINE) framework and two novel metrics——Consistency Score (CS) and Consistent Safety Score (CSS), which jointly assess two complementary forms of evaluation to quantify fake alignment and obtain corrected performance estimation. Applying FINE to 14 widely-used LLMs reveals several models with purported safety are poorly aligned in practice. Subsequently, we found that multiple-choice format data can also be used as high-quality contrast distillation-based fine-tuning data, which can strongly improve the alignment consistency of LLMs with minimal fine-tuning overhead. For data and code, see https://github.com/AIFlames/Fake-Alignment.
Video-aided grammar induction aims to leverage video information for finding more accurate syntactic grammars for accompanying text. While previous work focuses on building systems for inducing grammars on text that are well-aligned with video content, we investigate the scenario, in which text and video are only in loose correspondence. Such data can be found in abundance online, and the weak correspondence is similar to the indeterminacy problem studied in language acquisition. Furthermore, we build a new model that can better learn video-span correlation without manually designed features adopted by previous work. Experiments show that our model trained only on large-scale YouTube data with no text-video alignment reports strong and robust performances across three unseen datasets, despite domain shift and noisy label issues. Furthermore our model yields higher F1 scores than the previous state-of-the-art systems trained on in-domain data.
We investigate video-aided grammar induction, which learns a constituency parser from both unlabeled text and its corresponding video. Existing methods of multi-modal grammar induction focus on grammar induction from text-image pairs, with promising results showing that the information from static images is useful in induction. However, videos provide even richer information, including not only static objects but also actions and state changes useful for inducing verb phrases. In this paper, we explore rich features (e.g. action, object, scene, audio, face, OCR and speech) from videos, taking the recent Compound PCFG model as the baseline. We further propose a Multi-Modal Compound PCFG model (MMC-PCFG) to effectively aggregate these rich features from different modalities. Our proposed MMC-PCFG is trained end-to-end and outperforms each individual modality and previous state-of-the-art systems on three benchmarks, i.e. DiDeMo, YouCook2 and MSRVTT, confirming the effectiveness of leveraging video information for unsupervised grammar induction.