This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Retrieval-Augmented Generation (RAG) has proven its effectiveness in alleviating hallucinations for Large Language Models (LLMs). However, existing automated evaluation metrics cannot fairly evaluate the outputs generated by RAG models during training and evaluation. LLM-based judgment models provide the potential to produce high-quality judgments, but they are highly sensitive to evaluation prompts, leading to inconsistencies when judging the output of RAG models. This paper introduces the Judge-Consistency (ConsJudge) method, which aims to enhance LLMs to generate more accurate evaluations for RAG models. Specifically, ConsJudge prompts LLMs to generate different judgments based on various combinations of judgment dimensions, utilizes the judge-consistency to evaluate these judgments, and selects the chosen and rejected judgments for DPO training. Our experiments show that ConsJudge can effectively provide more accurate judgments for optimizing RAG models across various RAG models and datasets. Further analysis reveals that judgments generated by ConsJudge have a high agreement with the superior LLM. All codes are available at https://github.com/OpenBMB/ConsJudge.
End-to-end Large Speech Language Models (**LSLMs**) demonstrate strong potential in response latency and speech comprehension capabilities, showcasing general intelligence across speech understanding tasks. However, the ability to follow speech instructions has not been fully realized due to the lack of datasets and heavily biased training tasks. Leveraging the rich ASR datasets, previous approaches have used Large Language Models (**LLMs**) to continue the linguistic information of speech to construct speech instruction datasets. Yet, due to the gap between LLM-generated results and real human responses, the continuation methods further amplify these shortcomings. Given the high costs of collecting and annotating speech instruction datasets by humans, using speech synthesis to construct large-scale speech instruction datasets has become a balanced and robust alternative. Although modern Text-To-Speech (**TTS**) models have achieved near-human-level synthesis quality, it is challenging to appropriately convert out-of-distribution text instruction to speech due to the limitations of the training data distribution in TTS models. To address this issue, we propose a query rewriting framework with multi-LLM knowledge fusion, employing multiple agents to annotate and validate the synthesized speech, making it possible to construct high-quality speech instruction datasets without relying on human annotation. Experiments show that this method can transform text instructions into distributions more suitable for TTS models for speech synthesis through zero-shot rewriting, increasing data usability from 72% to 93%. It also demonstrates unique advantages in rewriting tasks that require complex knowledge and context-related abilities.
As Multimodal Large Language Models (MLLMs) develop, their potential security issues have become increasingly prominent. **Machine Unlearning (MU)**, as an effective strategy for forgetting specific knowledge in training data, has been widely used in privacy protection. However, *MU for safety in MLLM has yet to be fully explored*. To address this issue, we propose , a safety unlearning benchmark for MLLMs, consisting of 3,000 images and 28.8K VQA pairs. We comprehensively evaluate unlearning methods from two perspectives: **_forget quality_** and **_model utility_**. Our findings show that existing MU methods struggle to maintain model performance while implementing the forget operation and often suffer from **_over-forgetting_**. Hence, we introduce **Prompt Decouple (PD) Loss** to alleviate over-forgetting through decouple prompt during unlearning process. To quantitatively measure over-forgetting mitigated by PD Loss, we propose a new metric called **Safe Answer Refusal Rate (SARR)**. Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting and achieve a decrease of 79.5% in the SARR metric of LLaVA-7B and LLaVA-13B, while maintaining forget quality and model utility. Our code and dataset will be released upon acceptance. **Warning: This paper contains examples of harmful language and images, and reader discretion is recommended.**
The widespread deployment of large language models (LLMs) across critical domains has amplified the societal risks posed by algorithmically generated misinformation. Unlike traditional false content, LLM-generated misinformation can be self-reinforcing, highly plausible, and capable of rapid propagation across multiple languages, which traditional detection methods fail to mitigate effectively. This paper introduces a proactive defense paradigm, shifting from passive post hoc detection to anticipatory mitigation strategies. We propose a Three Pillars framework: (1) Knowledge Credibility, fortifying the integrity of training and deployed data; (2) Inference Reliability, embedding self-corrective mechanisms during reasoning; and (3) Input Robustness, enhancing the resilience of model interfaces against adversarial attacks. Through a comprehensive survey of existing techniques and a comparative meta-analysis, we demonstrate that proactive defense strategies offer up to 63% improvement over conventional methods in misinformation prevention, despite non-trivial computational overhead and generalization challenges. We argue that future research should focus on co-designing robust knowledge foundations, reasoning certification, and attack-resistant interfaces to ensure LLMs can effectively counter misinformation across varied domains.
Watermarking for Large Language Models (LLMs), which embeds imperceptible yet algorithmically detectable signals in model outputs to identify LLM-generated text, has become crucial in mitigating the potential misuse of LLMs. However, the abundance of LLM watermarking algorithms, their intricate mechanisms, and the complex evaluation procedures and perspectives pose challenges for researchers and the community to easily understand, implement and evaluate the latest advancements. To address these issues, we introduce MarkLLM, an open-source toolkit for LLM watermarking. MarkLLM offers a unified and extensible framework for implementing LLM watermarking algorithms, while providing user-friendly interfaces to ensure ease of access. Furthermore, it enhances understanding by supporting automatic visualization of the underlying mechanisms of these algorithms. For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines. Through MarkLLM, we aim to support researchers while improving the comprehension and involvement of the general public in LLM watermarking technology, fostering consensus and driving further advancements in research and application. Our code is available at https://github.com/THU-BPM/MarkLLM.
Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution. Existing works either utilize self-supervised schemes to refine relational feature signals by iteratively leveraging adaptive clustering and classification that provoke gradual drift problems, or adopt instance-wise contrastive learning which unreasonably pushes apart those sentence pairs that are semantically similar. To overcome these defects, we propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention and effectively optimize relation representation of sentences under exemplar-wise contrastive learning. Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.