Shujie Hu


2025

pdf bib
Autoregressive Speech Synthesis without Vector Quantization
Lingwei Meng | Long Zhou | Shujie Liu | Sanyuan Chen | Bing Han | Shujie Hu | Yanqing Liu | Jinyu Li | Sheng Zhao | Xixin Wu | Helen M. Meng | Furu Wei
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present MELLE, a novel continuous-valued token based language modeling approach for text-to-speech synthesis (TTS). MELLE autoregressively generates continuous mel-spectrogram frames directly from text condition, bypassing the need for vector quantization, which is typically designed for audio compression and sacrifices fidelity compared to continuous representations. Specifically, (i) instead of cross-entropy loss, we apply regression loss with a proposed spectrogram flux loss function to model the probability distribution of the continuous-valued tokens; (ii) we have incorporated variational inference into MELLE to facilitate sampling mechanisms, thereby enhancing the output diversity and model robustness. Experiments demonstrate that, compared to the two-stage codec language model VALL-E and its variants, the single-stage MELLE mitigates robustness issues by avoiding the inherent flaws of sampling vector-quantized codes, achieves superior performance across multiple metrics, and, most importantly, offers a more streamlined paradigm. The demos of our work are provided at https://aka.ms/melle.

2024

pdf bib
WavLLM: Towards Robust and Adaptive Speech Large Language Model
Shujie Hu | Long Zhou | Shujie Liu | Sanyuan Chen | Lingwei Meng | Hongkun Hao | Jing Pan | Xunying Liu | Jinyu Li | Sunit Sivasankaran | Linquan Liu | Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2024

Recent advancements in large language models (LLMs) have expanded their scope in natural language processing (NLP) to encompass multimodal functions. However, integrating listening capabilities effectively remains a significant challenge for generalization and complex auditory task execution. In this work, we introduce WavLLM, a robust and adaptive speech large language model featuring dual encoders—a Whisper encoder for semantics and a WavLM encoder for speaker characteristics. Within the two-stage curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks and also apply it to specialized speech-question-answer (SQA) dataset, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. The codes, models, audio samples, and SQA evaluation set can be accessed at https://github.com/microsoft/SpeechT5/tree/main/WavLLM.