Shiyu Zhao
2025
Token-Budget-Aware LLM Reasoning
Tingxu Han
|
Zhenting Wang
|
Chunrong Fang
|
Shiyu Zhao
|
Shiqing Ma
|
Zhenyu Chen
Findings of the Association for Computational Linguistics: ACL 2025
Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning and enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework that dynamically adjusts the number of reasoning tokens based on the reasoning complexity of each problem. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE.
2021
The Mininglamp Machine Translation System for WMT21
Shiyu Zhao
|
Xiaopu Li
|
Minghui Wu
|
Jie Hao
Proceedings of the Sixth Conference on Machine Translation
This paper describes Mininglamp neural machine translation systems of the WMT2021 news translation tasks. We have participated in eight directions translation tasks for news text including Chinese to/from English, Hausa to/from English, German to/from English and French to/from German. Our fundamental system was based on Transformer architecture, with wider or smaller construction for different news translation tasks. We mainly utilized the method of back-translation, knowledge distillation and fine-tuning to boost single model, while the ensemble was used to combine single models. Our final submission has ranked first for the English to/from Hausa task.
2020
OPPO’s Machine Translation Systems for WMT20
Tingxun Shi
|
Shiyu Zhao
|
Xiaopu Li
|
Xiaoxue Wang
|
Qian Zhang
|
Di Ai
|
Dawei Dang
|
Xue Zhengshan
|
Jie Hao
Proceedings of the Fifth Conference on Machine Translation
In this paper we demonstrate our (OPPO’s) machine translation systems for the WMT20 Shared Task on News Translation for all the 22 language pairs. We will give an overview of the common aspects across all the systems firstly, including two parts: the data preprocessing part will show how the data are preprocessed and filtered, and the system part will show our models architecture and the techniques we followed. Detailed information, such as training hyperparameters and the results generated by each technique will be depicted in the corresponding subsections. Our final submissions ranked top in 6 directions (English ↔ Czech, English ↔ Russian, French → German and Tamil → English), third in 2 directions (English → German, English → Japanese), and fourth in 2 directions (English → Pashto and and English → Tamil).