Shiping Ge


2025

pdf bib
Multi-Prompting Decoder Helps Better Language Understanding
Zifeng Cheng | Zhaoling Chen | Zhiwei Jiang | Yafeng Yin | Cong Wang | Shiping Ge | Qing Gu
Findings of the Association for Computational Linguistics: ACL 2025

Recent large Pre-trained Language Models (PLMs) usually only provide users with the inference APIs, namely the emerging Model-as-a-Service (MaaS) setting. To adapt MaaS PLMs to downstream tasks without accessing their parameters and gradients, some existing methods focus on the output-side adaptation of PLMs, viewing the PLM as an encoder and then optimizing a task-specific decoder for decoding the output hidden states and class scores of the PLM. Despite the effectiveness of these methods, they only use a single prompt to query PLMs for decoding, leading to a heavy reliance on the quality of the adopted prompt. In this paper, we propose a simple yet effective Multi-Prompting Decoder (MPD) framework for MaaS adaptation. The core idea is to query PLMs with multiple different prompts for each sample, thereby obtaining multiple output hidden states and class scores from PLMs for subsequent decoding. Such multi-prompting decoding paradigm can simultaneously mitigate reliance on the quality of a single prompt, alleviate the issue of data scarcity under the few-shot setting, and provide richer knowledge extracted from PLMs. Specifically, we propose two decoding strategies: multi-prompting decoding with optimal transport for hidden states and calibrated decoding for class scores. Extensive experiments demonstrate that our method achieves new state-of-the-art results on multiple natural language understanding datasets under the few-shot setting.

2023

pdf bib
Aggregating Multiple Heuristic Signals as Supervision for Unsupervised Automated Essay Scoring
Cong Wang | Zhiwei Jiang | Yafeng Yin | Zifeng Cheng | Shiping Ge | Qing Gu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automated Essay Scoring (AES) aims to evaluate the quality score for input essays. In this work, we propose a novel unsupervised AES approach ULRA, which does not require groundtruth scores of essays for training. The core idea of our ULRA is to use multiple heuristic quality signals as the pseudo-groundtruth, and then train a neural AES model by learning from the aggregation of these quality signals. To aggregate these inconsistent quality signals into a unified supervision, we view the AES task as a ranking problem, and design a special Deep Pairwise Rank Aggregation (DPRA) loss for training. In the DPRA loss, we set a learnable confidence weight for each signal to address the conflicts among signals, and train the neural AES model in a pairwise way to disentangle the cascade effect among partial-order pairs. Experiments on eight prompts of ASPA dataset show that ULRA achieves the state-of-the-art performance compared with previous unsupervised methods in terms of both transductive and inductive settings. Further, our approach achieves comparable performance with many existing domain-adapted supervised models, showing the effectiveness of ULRA. The code is available at https://github.com/tenvence/ulra.