ShiLiang Zhang


2025

pdf bib
OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation
Qinglin Zhang | Luyao Cheng | Chong Deng | Qian Chen | Wen Wang | Siqi Zheng | Jiaqing Liu | Hai Yu | Chao-Hong Tan | Zhihao Du | ShiLiang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Full-duplex spoken dialogue systems significantly surpass traditional turn-based dialogue systems, as they allow simultaneous bidirectional communication, closely mirroring human-human interactions. However, achieving low latency and natural interactions in full-duplex dialogue systems remains a significant challenge, especially considering human conversation dynamics such as interruptions, backchannels, and overlapping speech. In this paper, we introduce a novel End-to-End GPT-based model OmniFlatten for full-duplex conversation, capable of effectively modeling the complex behaviors inherent to natural conversations with low latency. To achieve full-duplex conversation capabilities, we propose a multi-stage post-training scheme that progressively adapts a text large language model (LLM) backbone into a speech-text dialogue LLM, capable of generating text and speech in real time, without modifying the architecture of the backbone LLM. The training process comprises three stages: modality alignment, half-duplex dialogue learning, and full-duplex dialogue learning. In all training stages, we standardize the data using a flattening operation, which enables unifying the training methods and the GPT backbone across different modalities and tasks. Our approach offers a simple modeling technique and a promising research direction for developing efficient and natural end-to-end full-duplex spoken dialogue systems.

pdf bib
UniCodec: Unified Audio Codec with Single Domain-Adaptive Codebook
Yidi Jiang | Qian Chen | Shengpeng Ji | Yu Xi | Wen Wang | Chong Zhang | Xianghu Yue | ShiLiang Zhang | Haizhou Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The emergence of audio language models is empowered by neural audio codecs, which establish critical mappings between continuous waveforms and discrete tokens compatible with language model paradigms. The evolutionary trends from multi-layer residual vector quantizer to single-layer quantizer are beneficial for language-autoregressive decoding. However, the capability to handle multi-domain audio signals through a single codebook remains constrained by inter-domain distribution discrepancies. In this work, we introduce UniCodec, a unified audio codec with a single codebook to support multi-domain audio data, including speech, music, and sound. To achieve this, we propose a partitioned domain-adaptive codebook method based on domain Mixture-of-Experts strategy to capture the distinct characteristics of each audio domain. Furthermore, to enrich the semantic density of the codec without auxiliary modules, we propose a self-supervised mask prediction modeling approach. Comprehensive objective and subjective evaluations demonstrate that UniCodec achieves excellent audio reconstruction performance across the three audio domains, outperforming existing unified neural codecs with a single codebook, and even surpasses state-of-the-art domain-specific codecs on both acoustic and semantic representation capabilities.

2024

pdf bib
emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation
Ziyang Ma | Zhisheng Zheng | Jiaxin Ye | Jinchao Li | Zhifu Gao | ShiLiang Zhang | Xie Chen
Findings of the Association for Computational Linguistics: ACL 2024

We propose emotion2vec, a universal speech emotion representation model. emotion2vec is pre-trained on open-source unlabeled emotion data through self-supervised online distillation, combining utterance-level loss and frame-level loss during pre-training. emotion2vec outperforms state-of-the-art pre-trained universal models and emotion specialist models by only training linear layers for the speech emotion recognition task on the mainstream IEMOCAP dataset. In addition, emotion2vec shows consistent improvements among 10 different languages of speech emotion recognition datasets. emotion2vec also shows excellent results on other emotion tasks, such as song emotion recognition, emotion prediction in conversation, and sentiment analysis. Comparison experiments, ablation experiments, and visualization comprehensively demonstrate the universal capability of the proposed emotion2vec. To the best of our knowledge, emotion2vec is the first universal representation model in various emotion-related tasks, filling a gap in the field.

2022

pdf bib
Speaker Overlap-aware Neural Diarization for Multi-party Meeting Analysis
Zhihao Du | ShiLiang Zhang | Siqi Zheng | Zhi-Jie Yan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recently, hybrid systems of clustering and neural diarization models have been successfully applied in multi-party meeting analysis. However, current models always treat overlapped speaker diarization as a multi-label classification problem, where speaker dependency and overlaps are not well considered. To overcome the disadvantages, we reformulate overlapped speaker diarization task as a single-label prediction problem via the proposed power set encoding (PSE). Through this formulation, speaker dependency and overlaps can be explicitly modeled. To fully leverage this formulation, we further propose the speaker overlap-aware neural diarization (SOND) model, which consists of a context-independent (CI) scorer to model global speaker discriminability, a context-dependent scorer (CD) to model local discriminability, and a speaker combining network (SCN) to combine and reassign speaker activities. Experimental results show that using the proposed formulation can outperform the state-of-the-art methods based on target speaker voice activity detection, and the performance can be further improved with SOND, resulting in a 6.30% relative diarization error reduction.

pdf bib
MDERank: A Masked Document Embedding Rank Approach for Unsupervised Keyphrase Extraction
Linhan Zhang | Qian Chen | Wen Wang | Chong Deng | ShiLiang Zhang | Bing Li | Wei Wang | Xin Cao
Findings of the Association for Computational Linguistics: ACL 2022

Keyphrase extraction (KPE) automatically extracts phrases in a document that provide a concise summary of the core content, which benefits downstream information retrieval and NLP tasks. Previous state-of-the-art methods select candidate keyphrases based on the similarity between learned representations of the candidates and the document. They suffer performance degradation on long documents due to discrepancy between sequence lengths which causes mismatch between representations of keyphrase candidates and the document. In this work, we propose a novel unsupervised embedding-based KPE approach, Masked Document Embedding Rank (MDERank), to address this problem by leveraging a mask strategy and ranking candidates by the similarity between embeddings of the source document and the masked document. We further develop a KPE-oriented BERT (KPEBERT) model by proposing a novel self-supervised contrastive learning method, which is more compatible to MDERank than vanilla BERT. Comprehensive evaluations on six KPE benchmarks demonstrate that the proposed MDERank outperforms state-of-the-art unsupervised KPE approach by average 1.80 F1@15 improvement. MDERank further benefits from KPEBERT and overall achieves average 3.53 F1@15 improvement over SIFRank.

2015

pdf bib
The Fixed-Size Ordinally-Forgetting Encoding Method for Neural Network Language Models
ShiLiang Zhang | Hui Jiang | MingBin Xu | JunFeng Hou | LiRong Dai
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)