2025
pdf
bib
abs
Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models
Seunguk Yu
|
Juhwan Choi
|
YoungBin Kim
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (**MSQAD**), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.
pdf
bib
abs
Making Sense of Korean Sentences: A Comprehensive Evaluation of LLMs through KoSEnd Dataset
Seunguk Yu
|
Kyeonghyun Kim
|
JungMin Yun
|
YoungBin Kim
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
Although LLMs have made significant progress in various languages, there are still concerns about their effectiveness with low-resource agglutinative languages compared to languages such as English. In this study, we focused on Korean, a language known for its complex sentence endings, and evaluated LLMs on this challenging aspect. We introduce the Korean Sentence Endings (KoSEnd) dataset, which includes 3,000 sentences, each annotated for the naturalness of 15 sentence ending forms. These were collected from diverse sources to cover a range of contexts. We evaluated 11 LLMs to assess their understanding of Korean sentence endings, analyzing them based on parameter count and prediction consistency. Notably, we found that informing models about the possibility of missing sentence endings improved performance, highlighting the impact of explicitly considering certain linguistic features.
2024
pdf
bib
abs
UniGen: Universal Domain Generalization for Sentiment Classification via Zero-shot Dataset Generation
Juhwan Choi
|
Yeonghwa Kim
|
Seunguk Yu
|
JungMin Yun
|
YoungBin Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Although pre-trained language models have exhibited great flexibility and versatility with prompt-based few-shot learning, they suffer from the extensive parameter size and limited applicability for inference. Recent studies have suggested that PLMs be used as dataset generators and a tiny task-specific model be trained to achieve efficient inference. However, their applicability to various domains is limited because they tend to generate domain-specific datasets. In this work, we propose a novel approach to universal domain generalization that generates a dataset regardless of the target domain. This allows for generalization of the tiny task model to any domain that shares the label space, thus enhancing the real-world applicability of the dataset generation paradigm. Our experiments indicate that the proposed method accomplishes generalizability across various domains while using a parameter set that is orders of magnitude smaller than PLMs.
pdf
bib
abs
Don’t be a Fool: Pooling Strategies in Offensive Language Detection from User-Intended Adversarial Attacks
Seunguk Yu
|
Juhwan Choi
|
YoungBin Kim
Findings of the Association for Computational Linguistics: NAACL 2024
Offensive language detection is an important task for filtering out abusive expressions and improving online user experiences. However, malicious users often attempt to avoid filtering systems through the involvement of textual noises. In this paper, we propose these evasions as user-intended adversarial attacks that insert special symbols or leverage the distinctive features of the Korean language. Furthermore, we introduce simple yet effective pooling strategies in a layer-wise manner to defend against the proposed attacks, focusing on the preceding layers not just the last layer to capture both offensiveness and token embeddings. We demonstrate that these pooling strategies are more robust to performance degradation even when the attack rate is increased, without directly training of such patterns. Notably, we found that models pre-trained on clean texts could achieve a comparable performance in detecting attacked offensive language, to models pre-trained on noisy texts by employing these pooling strategies.