Sensen Zhang
2025
SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model
Xun Liang
|
Simin Niu
|
Zhiyu Li
|
Sensen Zhang
|
Hanyu Wang
|
Feiyu Xiong
|
Zhaoxin Fan
|
Bo Tang
|
Jihao Zhao
|
Jiawei Yang
|
Shichao Song
|
Mengwei Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The indexing-retrieval-generation paradigm of retrieval-augmented generation (RAG) has been highly successful in solving knowledge-intensive tasks by integrating external knowledge into large language models (LLMs). However, the incorporation of external and unverified knowledge increases the vulnerability of LLMs because attackers can perform attack tasks by manipulating knowledge. In this paper, we introduce a benchmark named SafeRAG designed to evaluate the RAG security. First, we classify attack tasks into silver noise, inter-context conflict, soft ad, and white Denial-of-Service. Next, we construct RAG security evaluation dataset (i.e., SafeRAG dataset) primarily manually for each task. We then utilize the SafeRAG dataset to simulate various attack scenarios that RAG may encounter. Experiments conducted on 14 representative RAG components demonstrate that RAG exhibits significant vulnerability to all attack tasks and even the most apparent attack task can easily bypass existing retrievers, filters, or advanced LLMs, resulting in the degradation of RAG service quality. Code is available at: https://github.com/IAAR-Shanghai/SafeRAG.
2022
Eureka: Neural Insight Learning for Knowledge Graph Reasoning
Alex X. Zhang
|
Xun Liang
|
Bo Wu
|
Xiangping Zheng
|
Sensen Zhang
|
Yuhui Guo
|
Jun Wang
|
Xinyao Liu
Proceedings of the 29th International Conference on Computational Linguistics
The human recognition system has presented the remarkable ability to effortlessly learn novel knowledge from only a few trigger events based on prior knowledge, which is called insight learning. Mimicking such behavior on Knowledge Graph Reasoning (KGR) is an interesting and challenging research problem with many practical applications. Simultaneously, existing works, such as knowledge embedding and few-shot learning models, have been limited to conducting KGR in either “seen-to-seen” or “unseen-to-unseen” scenarios. To this end, we propose a neural insight learning framework named Eureka to bridge the “seen” to “unseen” gap. Eureka is empowered to learn the seen relations with sufficient training triples while providing the flexibility of learning unseen relations given only one trigger without sacrificing its performance on seen relations. Eureka meets our expectation of the model to acquire seen and unseen relations at no extra cost, and eliminate the need to retrain when encountering emerging unseen relations. Experimental results on two real-world datasets demonstrate that the proposed framework also outperforms various state-of-the-art baselines on datasets of both seen and unseen relations.