Sen Zhang


2025

pdf bib
“Yes, My LoRD.” Guiding Language Model Extraction with Locality Reinforced Distillation
Zi Liang | Qingqing Ye | Yanyun Wang | Sen Zhang | Yaxin Xiao | RongHua Li | Jianliang Xu | Haibo Hu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Model extraction attacks (MEAs) on large language models (LLMs) have received increasing attention in recent research. However, existing attack methods typically adapt the extraction strategies originally developed for deep neural networks (DNNs). They neglect the underlying inconsistency between the training tasks of MEA and LLM alignment, leading to suboptimal attack performance. To tackle this issue, we propose Locality Reinforced Distillation (LoRD), a novel model extraction algorithm specifically designed for LLMs. In particular, LoRD employs a newly defined policy-gradient-style training task that utilizes the responses of victim model as the signal to guide the crafting of preference for the local model. Theoretical analyses demonstrate that I) The convergence procedure of LoRD in model extraction is consistent with the alignment procedure of LLMs, and II) LoRD can reduce query complexity while mitigating watermark protection through our exploration-based stealing. Extensive experiments validate the superiority of our method in extracting various state-of-the-art commercial LLMs. Our code is available at: https://github.com/liangzid/LoRD-MEA.

2021

pdf bib
Fine-grained Factual Consistency Assessment for Abstractive Summarization Models
Sen Zhang | Jianwei Niu | Chuyuan Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Factual inconsistencies existed in the output of abstractive summarization models with original documents are frequently presented. Fact consistency assessment requires the reasoning capability to find subtle clues to identify whether a model-generated summary is consistent with the original document. This paper proposes a fine-grained two-stage Fact Consistency assessment framework for Summarization models (SumFC). Given a document and a summary sentence, in the first stage, SumFC selects the top-K most relevant sentences with the summary sentence from the document. In the second stage, the model performs fine-grained consistency reasoning at the sentence level, and then aggregates all sentences’ consistency scores to obtain the final assessment result. We get the training data pairs by data synthesis and adopt contrastive loss of data pairs to help the model identify subtle cues. Experiment results show that SumFC has made a significant improvement over the previous state-of-the-art methods. Our experiments also indicate that SumFC distinguishes detailed differences better.

2003

pdf bib
An Effective Combination of Different Order N-grams
Sen Zhang | Na Dong
Proceedings of the 17th Pacific Asia Conference on Language, Information and Computation