Rulin Shao


2025

pdf bib
Improving Factuality with Explicit Working Memory
Mingda Chen | Yang Li | Karthik Padthe | Rulin Shao | Alicia Yi Sun | Luke Zettlemoyer | Gargi Ghosh | Wen-tau Yih
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models can generate factually inaccurate content, a problem known as hallucination. Recent works have built upon retrieved-augmented generation to improve factuality through iterative prompting but these methods are limited by the traditional RAG design. To address these challenges, we introduce Ewe (Explicit Working Memory), a novel approach that enhances factuality in long-form text generation by integrating a working memory that receives real-time feedback from external resources. The memory is refreshed based on online fact-checking and retrieval feedback, allowing Ewe to rectify false claims during the generation process and ensure more accurate and reliable outputs. Our experiments demonstrate that Ewe outperforms strong baselines on four fact-seeking long-form generation datasets, increasing the factuality metric, VeriScore, by 2 to 6 points absolute without sacrificing the helpfulness of the responses. Further analysis reveals that the design of rules for memory updates, configurations of memory units, and the quality of the retrieval datastore are crucial factors for influencing model performance.

pdf bib
LongLeader: A Comprehensive Leaderboard for Large Language Models in Long-context Scenarios
Pei Chen | Hongye Jin | Cheng-Che Lee | Rulin Shao | Jingfeng Yang | Mingyu Zhao | Zhaoyu Zhang | Qin Lu | Kaiwen Men | Ning Xie | Huasheng Li | Bing Yin | Han Li | Lingyun Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs), exemplified by Claude and LLama, have exhibited impressive proficiency in tackling a myriad of Natural Language Processing (NLP) tasks. Yet, in pursuit of the ambitious goal of attaining Artificial General Intelligence (AGI), there remains ample room for enhancing LLM capabilities. Chief among these is the pressing need to bolster long-context comprehension. Numerous real-world scenarios demand LLMs to adeptly reason across extended contexts, such as multi-turn dialogues or agent workflow. Hence, recent advancements have been dedicated to stretching the upper bounds of long-context comprehension, with models like Claude 3 accommodating up to 200k tokens, employing various techniques to achieve this feat. Aligned with this progression, we propose a leaderboard LongLeader that seeks to comprehensively assess different long-context comprehension abilities of diverse LLMs and context length extension strategies across meticulously selected benchmarks. Specifically, we aim to address the following questions: 1) Do LLMs genuinely deliver the long-context proficiency they purport? 2) Which benchmarks offer reliable metrics for evaluating long-context comprehension? 3) What technical strategies prove effective in extending the understanding of longer contexts? We streamline the evaluation process for LLMs on the benchmarks, offering open-source access to the benchmarks and maintaining a dedicated website for leaderboards. We will continuously curate new datasets and update models to the leaderboards.

2024

pdf bib
Vision-Flan: Scaling Human-Labeled Tasks in Visual Instruction Tuning
Zhiyang Xu | Chao Feng | Rulin Shao | Trevor Ashby | Ying Shen | Di Jin | Yu Cheng | Qifan Wang | Lifu Huang
Findings of the Association for Computational Linguistics: ACL 2024

Despite vision-language models’ (VLMs) remarkable capabilities as versatile visual assistants, two substantial challenges persist within the existing VLM frameworks: (1) lacking task diversity in pretraining and visual instruction tuning, and (2) annotation error and bias in GPT-4 synthesized instruction tuning data. Both challenges lead to issues such as poor generalizability, hallucination, and catastrophic forgetting. To address these challenges, we construct Vision-Flan, the most diverse publicly available visual instruction tuning dataset to date, comprising 187 diverse tasks and 1,664,261 instances sourced from academic datasets, and each task is accompanied by an expert-written instruction. In addition, we propose a two-stage instruction tuning framework, in which VLMs are firstly finetuned on Vision-Flan and further tuned on GPT-4 synthesized data. We find this two-stage tuning framework significantly outperforms the traditional single-stage visual instruction tuning framework and achieves the state-of-the-art performance across a wide range of multi-modal evaluation benchmarks. Finally, we conduct in-depth analyses to understand visual instruction tuning and our findings reveal that: (1) GPT-4 synthesized data does not substantially enhance VLMs’ capabilities but rather modulates the model’s responses to human-preferred formats; (2) A minimal quantity (e.g., 1,000) of GPT-4 synthesized data can effectively align VLM responses with human-preference; (3) Visual instruction tuning mainly helps large-language models (LLMs) to understand visual features.

2023

pdf bib
Cross-modal Attention Congruence Regularization for Vision-Language Relation Alignment
Rohan Pandey | Rulin Shao | Paul Pu Liang | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., ‘mug in grass’) with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the language attention from ‘mug’ to ‘grass’ (capturing the semantic relation ‘in’) to match the visual attention from the mug to the grass (capturing the corresponding physical relation). Tokens and their corresponding objects are softly identified using a weighted mean of cross-modal attention. We prove that this notion of soft cross-modal equivalence is equivalent to enforcing congruence between vision and language attention matrices under a ‘change of basis’ provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to fine-tune UNITER and improve its Winoground Group score by 5.75 points.