Rong Han


2025

pdf bib
FocusLLM: Precise Understanding of Long Context by Dynamic Condensing
Zhenyu Li | Yike Zhang | Tengyu Pan | Yutao Sun | Zhichao Duan | Junjie Fang | Rong Han | Zixuan Wang | Jianyong Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Empowering LLMs with the ability to precisely understand long contexts is crucial for many downstream applications. However, handling long contexts with conventional transformer architecture requires substantial training and inference resources. Existing context condensing methods cannot accurately understand the full context, as there is a considerable amount of information loss in the condensing process. To address these issues, we present **FocusLLM**, a framework designed to extend the fixed context length of any decoder-only LLM, allowing the model to focus on relevant information from very long sequences. FocusLLM first divides long text input into chunks based on the model’s original context length. It then employs the **_dynamic condensing_** process to distill crucial information from each chunk. Ultimately, through the novel **_parallel decoding_** mechanism, FocusLLM can integrate the extracted information into its local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length and with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.

pdf bib
VividMed: Vision Language Model with Versatile Visual Grounding for Medicine
Lingxiao Luo | Bingda Tang | Xuanzhong Chen | Rong Han | Ting Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent advancements in Vision Language Models (VLMs) have demonstrated remarkable promise in generating visually grounded responses. However, their application in the medical domain is hindered by unique challenges. For instance, most VLMs rely on a single method of visual grounding, whereas complex medical tasks demand more versatile approaches. Additionally, while most VLMs process only 2D images, a large portion of medical images are 3D. The lack of medical data further compounds these obstacles. To address these challenges, we present VividMed, a vision language model with versatile visual grounding for medicine. Our model supports generating both semantic segmentation masks and instance-level bounding boxes, and accommodates various imaging modalities, including both 2D and 3D data. We design a three-stage training procedure and an automatic data synthesis pipeline based on open datasets and models. Besides visual grounding tasks, VividMed also excels in other common downstream tasks, including Visual Question Answering (VQA) and report generation. Ablation studies empirically show that the integration of visual grounding ability leads to improved performance on these tasks. Our code is publicly available at https://github.com/function2-llx/MMMM.

2020

pdf bib
MAVEN: A Massive General Domain Event Detection Dataset
Xiaozhi Wang | Ziqi Wang | Xu Han | Wangyi Jiang | Rong Han | Zhiyuan Liu | Juanzi Li | Peng Li | Yankai Lin | Jie Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Event detection (ED), which means identifying event trigger words and classifying event types, is the first and most fundamental step for extracting event knowledge from plain text. Most existing datasets exhibit the following issues that limit further development of ED: (1) Data scarcity. Existing small-scale datasets are not sufficient for training and stably benchmarking increasingly sophisticated modern neural methods. (2) Low coverage. Limited event types of existing datasets cannot well cover general-domain events, which restricts the applications of ED models. To alleviate these problems, we present a MAssive eVENt detection dataset (MAVEN), which contains 4,480 Wikipedia documents, 118,732 event mention instances, and 168 event types. MAVEN alleviates the data scarcity problem and covers much more general event types. We reproduce the recent state-of-the-art ED models and conduct a thorough evaluation on MAVEN. The experimental results show that existing ED methods cannot achieve promising results on MAVEN as on the small datasets, which suggests that ED in the real world remains a challenging task and requires further research efforts. We also discuss further directions for general domain ED with empirical analyses. The source code and dataset can be obtained from https://github.com/THU-KEG/MAVEN-dataset.