As the capabilities of Multimodal Large Language Models (MLLMs) improve, the need for higher-order evaluation of them is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To address this, we introduce the CII-Bench, which aims to assess MLLMs’ such capabilities for Chinese images. To ensure the authenticity of the Chinese context, images in CII-Bench are sourced from the Chinese Internet and manually reviewed, with corresponding answers also manually crafted. Additionally, CII-Bench incorporates images that represent Chinese traditional culture, such as famous Chinese traditional paintings, which can deeply reflect the model’s understanding of Chinese traditional culture. Through experiments on multiple MLLMs using CII-Bench, significant findings emerged. There is a large gap between MLLMs and humans in performance. The highest MLLM accuracy is 64.4%, while the human average is 78.2% and the peak is 81.0%. MLLMs perform poorly on traditional culture images, indicating limitations in understanding high-level semantics and lacking a deep knowledge base of Chinese traditional culture. Moreover, most models have higher accuracy when image emotion hints are added to the prompts. We believe CII-Bench will help MLLMs better understand Chinese semantics and specific images, and move forward the development of expert artificial general intelligence (AGI). Our project is publicly available at https://cii-bench.github.io.
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences, ensuring these LLMs behave in beneficial and comprehensible ways to users. However, a longstanding challenge in human alignment techniques based on reinforcement learning lies in their inherent complexity and difficulty in training. To address this challenge, we present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly. CLHA employs a novel rescoring strategy to evaluate the noise within the data by considering its inherent quality and dynamically adjusting the training process. Simultaneously, CLHA utilizes pairwise contrastive loss and adaptive supervised fine-tuning loss to adaptively modify the likelihood of generating responses, ensuring enhanced alignment with human preferences. Using advanced methods, CLHA surpasses other algorithms, showcasing superior performance in terms of reward model scores, automatic evaluations, and human assessments on the widely used “Helpful and Harmless” dataset.