2025
pdf
bib
abs
FaithfulRAG: Fact-Level Conflict Modeling for Context-Faithful Retrieval-Augmented Generation
Qinggang Zhang
|
Zhishang Xiang
|
Yilin Xiao
|
Le Wang
|
Junhui Li
|
Xinrun Wang
|
Jinsong Su
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) augmented with retrieval systems have demonstrated significant potential in handling knowledge-intensive tasks. However, these models often struggle with unfaithfulness issues, generating outputs that either ignore the retrieved context or inconsistently blend it with the LLM’s parametric knowledge. This issue is particularly severe in cases of knowledge conflict, where the retrieved context conflicts with the model’s parametric knowledge. While existing faithful RAG approaches enforce strict context adherence through well-designed prompts or modified decoding strategies, our analysis reveals a critical limitation: they achieve faithfulness by forcibly suppressing the model’s parametric knowledge, which undermines the model’s internal knowledge structure and increases the risk of misinterpreting the context. To this end, this paper proposes FaithfulRAG, a novel framework that resolves knowledge conflicts by explicitly modeling discrepancies between the model’s parametric knowledge and retrieved context. Specifically, FaithfulRAG identifies conflicting knowledge at the fact level and designs a self-thinking process, allowing LLMs to reason about and integrate conflicting facts before generating responses. Extensive experiments demonstrate that our method outperforms state-of-the-art methods. The code is available at https://github.com/DeepLearnXMU/Faithful-RAG.
2024
pdf
bib
abs
Modality-Aware Integration with Large Language Models for Knowledge-Based Visual Question Answering
Junnan Dong
|
Qinggang Zhang
|
Huachi Zhou
|
Daochen Zha
|
Pai Zheng
|
Xiao Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Knowledge-based visual question answering (KVQA) has been extensively studied to answer visual questions with external knowledge, e.g., knowledge graphs (KGs). While several attempts have been proposed to leverage large language models (LLMs) as an implicit knowledge source, it remains challenging since LLMs may generate hallucinations. Moreover, multiple knowledge sources, e.g., images, KGs and LLMs, cannot be readily aligned for complex scenarios. To tackle these, we present a novel modality-aware integration with LLMs for KVQA (MAIL). It carefully leverages multimodal knowledge for both image understanding and knowledge reasoning. Specifically, (i) we propose a two-stage prompting strategy with LLMs to densely embody the image into a *scene graph* with detailed visual features; (ii) We construct a coupled *concept graph* by linking the mentioned entities with external facts. (iii) A tailored pseudo-siamese graph medium fusion is designed for sufficient multimodal fusion. We utilize the shared mentioned entities in two graphs as mediums to bridge a tight inter-modal exchange, while maximally preserving insightful intra-modal learning by constraining the fusion within mediums. Extensive experiments show the superiority of MAIL.
pdf
bib
abs
Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM
Zijin Hong
|
Zheng Yuan
|
Hao Chen
|
Qinggang Zhang
|
Feiran Huang
|
Xiao Huang
Findings of the Association for Computational Linguistics: ACL 2024
Generating accurate SQL queries for user questions (text-to-SQL) has been a long-standing challenge since it requires a deep understanding of both the user’s question and the corresponding database schema in order to retrieve the desired content accurately. Existing methods rely on the comprehensive capability of large language models (LLMs) to generate the SQL. However, some necessary knowledge is not explicitly included in the database schema and user question or has been learned by LLMs. Thus, the generated SQL of the knowledge-insufficient questions may be inaccurate, negatively influencing the text-to-SQL models’ performance and robustness. To address this challenge, we propose the Knowledge-to-SQL framework, which employs tailored Data Expert LLM (DELLM) to provide helpful knowledge for all text-to-SQL models. Specifically, we introduce the detailed implementation of DELLM regarding table reading and the basic fine-tuning process. We further propose a Preference Learning via Database Feedback (PLDBF) strategy, refining the DELLM to generate more helpful knowledge for LLMs. Extensive experiments verify that DELLM can enhance the state-of-the-art approaches for text-to-SQL tasks. The corresponding code of DELLM is released for further research.