Qiang Zhang


2025

pdf bib
Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition
Kehua Feng | Keyan Ding | Tan Hongzhi | Kede Ma | Zhihua Wang | Shuangquan Guo | Cheng Yuzhou | Ge Sun | Guozhou Zheng | Qiang Zhang | Huajun Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The past years have witnessed a proliferation of large language models (LLMs). Yet, reliable evaluation of LLMs is challenging due to the inaccuracy of standard metrics in human perception of text quality and the inefficiency in sampling informative test examples for human evaluation. This paper presents a sample-efficient human evaluation method for LLMs based on the principle of MAximum Discrepancy (MAD) competition. MAD automatically selects a small set of informative input instructions, each of which maximizes the discrepancy of two LLMs’ reponses, which are subsequently subject to three-alternative forced choice by human subjects. The pairwise comparison results of multiple LLMs are then aggregated into a global ranking using the Elo rating system. We compare eight representative LLMs in terms of four skills: knowledge understanding, mathematical reasoning, writing, and coding. Experimental results show that the proposed method reliably achieves the “golden” ranking of LLMs with a minimum set of input instructions, which in turn reveal their relative strengths and weaknesses, and offers valuable insights for further LLM advancement.

pdf bib
Enhancing Safe and Controllable Protein Generation via Knowledge Preference Optimization
Yuhao Wang | Keyan Ding | Kehua Feng | Zeyuan Wang | Ming Qin | Xiaotong Li | Qiang Zhang | Huajun Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Protein language models have emerged as powerful tools for sequence generation, offering substantial advantages in functional optimization and *denovo* design. However, these models also present significant risks of generating harmful protein sequences, such as those that enhance viral transmissibility or evade immune responses. These concerns underscore critical biosafety and ethical challenges. To address these issues, we propose a Knowledge-guided Preference Optimization (KPO) framework that integrates prior knowledge via a Protein Safety Knowledge Graph. This framework utilizes an efficient graph pruning strategy to identify preferred sequences and employs reinforcement learning to minimize the risk of generating harmful proteins. Experimental results demonstrate that KPO effectively reduces the likelihood of producing hazardous sequences while maintaining high functionality, offering a robust safety assurance framework for applying generative models in biotechnology.

pdf bib
MapNav: A Novel Memory Representation via Annotated Semantic Maps for VLM-based Vision-and-Language Navigation
Lingfeng Zhang | Xiaoshuai Hao | Qinwen Xu | Qiang Zhang | Xinyao Zhang | Pengwei Wang | Jing Zhang | Zhongyuan Wang | Shanghang Zhang | Renjing Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Vision-language navigation (VLN) is a key task in Embodied AI, requiring agents to navigate diverse and unseen environments while following natural language instructions. Traditional approaches rely heavily on historical observations as spatio-temporal contexts for decision making, leading to significant storage and computational overhead. In this paper, we introduce MapNav, a novel end-to-end VLN model that leverages Annotated Semantic Map (ASM) to replace historical frames. Specifically, our approach constructs a top-down semantic map at the start of each episode and update it at each timestep, allowing for precise object mapping and structured navigation information. Then, we enhance this map with explicit textual labels for key regions, transforming abstract semantics into clear navigation cues and generate our ASM. MapNav agent using the constructed ASM as input, and use the powerful end-to-end capabilities of VLM to empower VLN. Extensive experiments demonstrate that MapNav achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, validating the effectiveness of our method. We will release our ASM generation source code and dataset to ensure reproducibility, contributing valuable resources to the field. We believe that our proposed MapNav can be used as a new memory representation method in VLN, paving the way for future research in this field.

pdf bib
EventRAG: Enhancing LLM Generation with Event Knowledge Graphs
Zairun Yang | Yilin Wang | Zhengyan Shi | Yuan Yao | Lei Liang | Keyan Ding | Emine Yilmaz | Huajun Chen | Qiang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-augmented generation (RAG) systems often struggle with narrative-rich documents and event-centric reasoning, particularly when synthesizing information across multiple sources. We present EventRAG, a novel framework that enhances text generation through structured event representations. We first construct an Event Knowledge Graph by extracting events and merging semantically equivalent nodes across documents, while expanding under-connected relationships. We then employ an iterative retrieval and inference strategy that explicitly captures temporal dependencies and logical relationships across events. Experiments on UltraDomain and MultiHopRAG benchmarks show EventRAG’s superiority over baseline RAG systems, with substantial gains in generation effectiveness, logical consistency, and multi-hop reasoning accuracy. Our work advances RAG systems by integrating structured event semantics with iterative inference, particularly benefiting scenarios requiring temporal and logical reasoning across documents.

pdf bib
RiOT: Efficient Prompt Refinement with Residual Optimization Tree
Chenyi Zhou | Zhengyan Shi | Yuan Yao | Lei Liang | Huajun Chen | Qiang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models (LLMs) have highlighted their potential across a variety of tasks, but their performance still heavily relies on the design of effective prompts. Existing methods for automatic prompt optimization face two challenges: lack of diversity, limiting the exploration of valuable and innovative directions and semantic drift, where optimizations for one task can degrade performance in others. To address these issues, we propose Residual Optimization Tree (RiOT), a novel framework for automatic prompt optimization. RiOT iteratively refines prompts through text gradients, generating multiple semantically diverse candidates at each step, and selects the best prompt using perplexity. Additionally, RiOT incorporates the text residual connection to mitigate semantic drift by selectively retaining beneficial content across optimization iterations. A tree structure efficiently manages the optimization process, ensuring scalability and flexibility. Extensive experiments across five benchmarks — covering commonsense, mathematical, logical, temporal, and semantic reasoning — demonstrate that RiOT outperforms both previous prompt optimization methods and manual prompting. Code will be released.

pdf bib
Boosting LLM’s Molecular Structure Elucidation with Knowledge Enhanced Tree Search Reasoning
Xiang Zhuang | Bin Wu | Jiyu Cui | Kehua Feng | Xiaotong Li | Huabin Xing | Keyan Ding | Qiang Zhang | Huajun Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Molecular structure elucidation involves deducing a molecule’s structure from various types of spectral data, which is crucial in chemical experimental analysis. While large language models (LLMs) have shown remarkable proficiency in analyzing and reasoning through complex tasks, they still encounter substantial challenges in molecular structure elucidation. We identify that these challenges largely stem from LLMs’ limited grasp of specialized chemical knowledge. In this work, we introduce a Knowledge-enhanced reasoning framework for Molecular Structure Elucidation (K-MSE), leveraging Monte Carlo Tree Search for test-time scaling as a plugin. Specifically, we construct an external molecular substructure knowledge base to extend the LLMs’ coverage of the chemical structure space. Furthermore, we design a specialized molecule-spectrum scorer to act as a reward model for the reasoning process, addressing the issue of inaccurate solution evaluation in LLMs. Experimental results show that our approach significantly boosts performance, particularly gaining more than 20% improvement on both GPT-4o-mini and GPT-4o.

2024

pdf bib
InstructProtein: Aligning Human and Protein Language via Knowledge Instruction
Zeyuan Wang | Qiang Zhang | Keyan Ding | Ming Qin | Xiang Zhuang | Xiaotong Li | Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have revolutionized the field of natural language processing, but they fall short in comprehending biological sequences such as proteins. To address this challenge, we propose InstructProtein, an innovative LLM that possesses bidirectional generation capabilities in both human and protein languages: (i) taking a protein sequence as input to predict its textual function description and (ii) using natural language to prompt protein sequence generation. To achieve this, we first pre-train an LLM on both protein and natural language corpora, enabling it to comprehend individual languages. Then supervised instruction tuning is employed to facilitate the alignment of these two distinct languages. Herein, we introduce a knowledge graph-based instruction generation framework to construct a high-quality instruction dataset, addressing the annotation imbalance and the absence of instructional signals in the existing protein-text corpus. In particular, the instructions inherit the structural relations between proteins and function annotations in knowledge graphs, which empowers our model to engage in the causal modeling of protein functions, akin to the chain-of-thought processes in natural languages. Extensive experiments on bidirectional protein-text generation tasks show that InstructProtein outperforms state-of-the-art LLMs by a large margin.

pdf bib
Overcoming Catastrophic Forgetting by Exemplar Selection in Task-oriented Dialogue System
Chen Chen | Ruizhe Li | Yuchen Hu | Yuanyuan Chen | Chengwei Qin | Qiang Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Intelligent task-oriented dialogue systems (ToDs) are expected to continuously acquire new knowledge, also known as Continual Learning (CL), which is crucial to fit ever-changing user needs. However, catastrophic forgetting dramatically degrades the model performance in face of a long streamed curriculum. In this paper, we aim to overcome the forgetting problem in ToDs and propose a method (HESIT) with hyper-gradient-based exemplar strategy, which samples influential exemplars for periodic retraining. Instead of unilaterally observing data or models, HESIT adopts a profound exemplar selection strategy that considers the general performance of the trained model when selecting exemplars for each task domain. Specifically, HESIT analyzes the training data influence by tracing their hyper-gradient in the optimization process. Furthermore, HESIT avoids estimating Hessian to make it compatible for ToDs with a large pre-trained model. Experimental results show that HESIT effectively alleviates catastrophic forgetting by exemplar selection, and achieves state-of-the-art performance on the largest CL benchmark of ToDs in terms of all metrics.

pdf bib
Enhancing Cross Text-Molecule Learning by Self-Augmentation
Yinuo Jiang | Xiang Zhuang | Keyan Ding | Qiang Zhang | Huajun Chen
Findings of the Association for Computational Linguistics: ACL 2024

The development of Large Language Models (LLMs) has greatly advanced the field of drug discovery, with the belief that natural language can enhance human control over molecule design. However, the scarcity of high-quality labeled data remains a challenge for cross text-molecule learning. Existing datasets are limited due to the difficulty of collecting precise molecule-description pairs. Although recent efforts have utilized pseudo data generated by LLMs for augmentation, the lack of specialized chemistry knowledge of LLMs and the absence of an effective high quality data selector may introduce noise into the annotations, compromising the models’ robustness. To address these challenges, this paper introduces a novel framework that interweaves model fine-tuning and data augmentation to overcome the scarcity of high-quality data. The proposed approach involves an iterative procedure where the model plays dual roles in annotating unlabeled data and sampling a subset of high-quality data until convergence is achieved, enhancing the model’s understanding and adaptability. Additionally, a new dataset called SAPubChem-41 is presented, which comprises meticulously curated high-quality parallel molecule-description pairs designed specifically for fine-tuning purposes. This research provides an important contribution to the field by addressing the need for high-quality datasets and presenting an effective framework for cross text-molecule learning.

pdf bib
Deeper Insights Without Updates: The Power of In-Context Learning Over Fine-Tuning
Qingyu Yin | Xuzheng He | Chak Tou Leong | Fan Wang | Yanzhao Yan | Xiaoyu Shen | Qiang Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Fine-tuning and in-context learning (ICL) are two prevalent methods in imbuing large language models with task-specific knowledge. It is commonly believed that fine-tuning can surpass ICL given sufficient training samples as it allows the model to adjust its internal parameters based on the data. However, this paper presents a counterintuitive finding: For tasks with implicit patterns, ICL captures these patterns significantly better than fine-tuning. We developed several datasets featuring implicit patterns, such as sequences determining answers through parity or identifying reducible terms in calculations. We then evaluated the models’ understanding of these patterns under both fine-tuning and ICL across models ranging from 0.5B to 7B parameters. The results indicate that models employing ICL can quickly grasp deep patterns and significantly improve accuracy. In contrast, fine-tuning, despite utilizing thousands of times more training samples than ICL, achieved only limited improvements. We also proposed circuit shift theory from a mechanistic interpretability’s view to explain why ICL wins.

pdf bib
DET: A Dual-Encoding Transformer for Relational Graph Embedding
Lingbing Guo | Zhuo Chen | Jiaoyan Chen | Qiang Zhang | Huajun Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Despite recent successes in natural language processing and computer vision, Transformer faces scalability issues when processing graphs, e.g., computing the full node-to-node attention on knowledge graphs (KGs) with million of entities is still infeasible. The existing methods mitigate this problem by considering only the local neighbors, sacrificing the Transformer’s ability to attend to elements at any distance. This paper proposes a new Transformer architecture called Dual-Encoding Transformer (DET). DET comprises a structural encoder to aggregate information from nearby neighbors, and a semantic encoder to seek for semantically relevant nodes. We adopt a semantic neighbor search approach inspired by multiple sequence alignment (MSA) algorithms used in biological sciences. By stacking the two encoders alternately, similar to the MSA Transformer for protein representation, our method achieves superior performance compared to state-of-the-art attention-based methods on complex relational graphs like KGs and citation networks. Additionally, DET remains competitive for smaller graphs such as molecules.

pdf bib
Self-Emotion Blended Dialogue Generation in Social Simulation Agents
Qiang Zhang | Jason Naradowsky | Yusuke Miyao
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue

When engaging in conversations, dialogue agents in a virtual simulation environment may exhibit their own emotional states that are unrelated to the immediate conversational context, a phenomenon known as self-emotion. This study explores how such self-emotion affects the agents’ behaviors in dialogue strategies and decision-making within a large language model (LLM)-driven simulation framework. In a dialogue strategy prediction experiment, we analyze the dialogue strategy choices employed by agents both with and without self-emotion, comparing them to those of humans. The results show that incorporating self-emotion helps agents exhibit more human-like dialogue strategies. In an independent experiment comparing the performance of models fine-tuned on GPT-4 generated dialogue datasets, we demonstrate that self-emotion can lead to better overall naturalness and humanness. Finally, in a virtual simulation environment where agents have free discussions, we show that self-emotion of agents can significantly influence the decision-making process of the agents, leading to approximately a 50% change in decisions.

2023

pdf bib
A Survey on Asking Clarification Questions Datasets in Conversational Systems
Hossein A. Rahmani | Xi Wang | Yue Feng | Qiang Zhang | Emine Yilmaz | Aldo Lipani
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ability to understand a user’s underlying needs is critical for conversational systems, especially with limited input from users in a conversation. Thus, in such a domain, Asking Clarification Questions (ACQs) to reveal users’ true intent from their queries or utterances arise as an essential task. However, it is noticeable that a key limitation of the existing ACQs studies is their incomparability, from inconsistent use of data, distinct experimental setups and evaluation strategies. Therefore, in this paper, to assist the development of ACQs techniques, we comprehensively analyse the current ACQs research status, which offers a detailed comparison of publicly available datasets, and discusses the applied evaluation metrics, joined with benchmarks for multiple ACQs-related tasks. In particular, given a thorough analysis of the ACQs task, we discuss a number of corresponding research directions for the investigation of ACQs as well as the development of conversational systems.

pdf bib
Ask an Expert: Leveraging Language Models to Improve Strategic Reasoning in Goal-Oriented Dialogue Models
Qiang Zhang | Jason Naradowsky | Yusuke Miyao
Findings of the Association for Computational Linguistics: ACL 2023

Existing dialogue models may encounter scenarios which are not well-represented in the training data, and as a result generate responses that are unnatural, inappropriate, or unhelpful. We propose the “Ask an Expert” framework in which the model is trained with access to an “expert” which it can consult at each turn. Advice is solicited via a structured dialogue with the expert, and the model is optimized to selectively utilize (or ignore) it given the context and dialogue history. In this work the expert takes the form of an LLM.We evaluate this framework in a mental health support domain, where the structure of the expert conversation is outlined by pre-specified prompts which reflect a reasoning strategy taught to practitioners in the field. Blenderbot models utilizing “Ask an Expert” show quality improvements across all expert sizes, including those with fewer parameters than the dialogue model itself. Our best model provides a ~10% improvement over baselines, approaching human-level scores on “engingingness” and “helpfulness” metrics.

pdf bib
Mind the Gap Between Conversations for Improved Long-Term Dialogue Generation
Qiang Zhang | Jason Naradowsky | Yusuke Miyao
Findings of the Association for Computational Linguistics: EMNLP 2023

Knowing how to end and resume conversations over time is a natural part of communication, allowing for discussions to span weeks, months, or years. The duration of gaps between conversations dictates which topics are relevant and which questions to ask, and dialogue systems which do not explicitly model time may generate responses that are unnatural. In this work we explore the idea of making dialogue models aware of time, and present GapChat, a multi-session dialogue dataset in which the time between each session varies. While the dataset is constructed in real-time, progress on events in speakers’ lives is simulated in order to create realistic dialogues occurring across a long timespan. We expose time information to the model and compare different representations of time and event progress. In human evaluation we show that time-aware models perform better in metrics that judge the relevance of the chosen topics and the information gained from the conversation.

pdf bib
GenKIE: Robust Generative Multimodal Document Key Information Extraction
Panfeng Cao | Ye Wang | Qiang Zhang | Zaiqiao Meng
Findings of the Association for Computational Linguistics: EMNLP 2023

Key information extraction (KIE) from scanned documents has gained increasing attention because of its applications in various domains. Although promising results have been achieved by some recent KIE approaches, they are usually built based on discriminative models, which lack the ability to handle optical character recognition (OCR) errors and require laborious token-level labeling. In this paper, we propose a novel generative end-to-end model, named GenKIE, to address the KIE task. GenKIE is a sequence-to-sequence multimodal generative model that utilizes multimodal encoders to embed visual, layout and textual features and a decoder to generate the desired output. Well-designed prompts are leveraged to incorporate the label semantics as the weakly supervised signals and entice the generation of the key information. One notable advantage of the generative model is that it enables automatic correction of OCR errors. Besides, token-level granular annotation is not required. Extensive experiments on multiple public real-world datasets show that GenKIE effectively generalizes over different types of documents and achieves state-of-the-art results. Our experiments also validate the model’s robustness against OCR errors, making GenKIE highly applicable in real-world scenarios.

2022

pdf bib
Dynamic Schema Graph Fusion Network for Multi-Domain Dialogue State Tracking
Yue Feng | Aldo Lipani | Fanghua Ye | Qiang Zhang | Emine Yilmaz
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialogue State Tracking (DST) aims to keep track of users’ intentions during the course of a conversation. In DST, modelling the relations among domains and slots is still an under-studied problem. Existing approaches that have considered such relations generally fall short in: (1) fusing prior slot-domain membership relations and dialogue-aware dynamic slot relations explicitly, and (2) generalizing to unseen domains. To address these issues, we propose a novel Dynamic Schema Graph Fusion Network (DSGFNet), which generates a dynamic schema graph to explicitly fuse the prior slot-domain membership relations and dialogue-aware dynamic slot relations. It also uses the schemata to facilitate knowledge transfer to new domains. DSGFNet consists of a dialogue utterance encoder, a schema graph encoder, a dialogue-aware schema graph evolving network, and a schema graph enhanced dialogue state decoder. Empirical results on benchmark datasets (i.e., SGD, MultiWOZ2.1, and MultiWOZ2.2), show that DSGFNet outperforms existing methods.

pdf bib
Deep Reinforcement Learning for Entity Alignment
Lingbing Guo | Yuqiang Han | Qiang Zhang | Huajun Chen
Findings of the Association for Computational Linguistics: ACL 2022

Embedding-based methods have attracted increasing attention in recent entity alignment (EA) studies. Although great promise they can offer, there are still several limitations. The most notable is that they identify the aligned entities based on cosine similarity, ignoring the semantics underlying the embeddings themselves. Furthermore, these methods are shortsighted, heuristically selecting the closest entity as the target and allowing multiple entities to match the same candidate. To address these limitations, we model entity alignment as a sequential decision-making task, in which an agent sequentially decides whether two entities are matched or mismatched based on their representation vectors. The proposed reinforcement learning (RL)-based entity alignment framework can be flexibly adapted to most embedding-based EA methods. The experimental results demonstrate that it consistently advances the performance of several state-of-the-art methods, with a maximum improvement of 31.1% on Hits@1.

pdf bib
Rethinking Offensive Text Detection as a Multi-Hop Reasoning Problem
Qiang Zhang | Jason Naradowsky | Yusuke Miyao
Findings of the Association for Computational Linguistics: ACL 2022

We introduce the task of implicit offensive text detection in dialogues, where a statement may have either an offensive or non-offensive interpretation, depending on the listener and context. We argue that reasoning is crucial for understanding this broader class of offensive utterances, and release SLIGHT, a dataset to support research on this task. Experiments using the data show that state-of-the-art methods of offense detection perform poorly when asked to detect implicitly offensive statements, achieving only ∼ 11% accuracy. In contrast to existing offensive text detection datasets, SLIGHT features human-annotated chains of reasoning which describe the mental process by which an offensive interpretation can be reached from each ambiguous statement. We explore the potential for a multi-hop reasoning approach by utilizing existing entailment models to score the probability of these chains, and show that even naive reasoning models can yield improved performance in most situations. Analysis of the chains provides insight into the human interpretation process and emphasizes the importance of incorporating additional commonsense knowledge.

2015

pdf bib
Cross-lingual Pseudo Relevance Feedback Based on Weak Relevant Topic Alignment
Xuwen Wang | Qiang Zhang | Xiaojie Wang | Junlian Li
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation