Qian Dong
2025
CalibraEval: Calibrating Prediction Distribution to Mitigate Selection Bias in LLMs-as-Judges
Haitao Li
|
Junjie Chen
|
Qingyao Ai
|
Zhumin Chu
|
Yujia Zhou
|
Qian Dong
|
Yiqun Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The use of large language models (LLMs) as automated evaluation tools to assess the quality of generated natural language, known as ”LLMs-as-Judges”, has demonstrated promising capabilities and is rapidly gaining widespread attention. However, when applied to pairwise comparisons of candidate responses, LLM-based evaluators often exhibit selection bias. Specifically, their judgments may become inconsistent when the option positions or ID tokens are swapped, compromising the effectiveness and fairness of the evaluation result. To address this challenge, we introduce CalibraEval, a novel label-free method for mitigating selection bias during inference. Specifically, CalibraEval reformulates debiasing as an optimization task aimed at adjusting observed prediction distributions to align with unbiased prediction distributions. To solve this optimization problem, we propose a non-parametric order-preserving algorithm (NOA). This algorithm leverages the partial order relationships between model prediction distributions, thereby eliminating the need for explicit labels and precise mathematical function modeling. Empirical evaluations of LLMs in multiple representative benchmarks demonstrate that CalibraEval effectively mitigates selection bias and improves performance compared to existing debiasing methods. This work marks a step toward building more robust and unbiased automated evaluation frameworks, paving the way for improved reliability in AI-driven assessments. The code can be found at https://github.com/CSHaitao/CalibraEval.
2024
Revisiting Interpolation Augmentation for Speech-to-Text Generation
Chen Xu
|
Jie Wang
|
Xiaoqian Liu
|
Qian Dong
|
Chunliang Zhang
|
Tong Xiao
|
JingBo Zhu
|
Dapeng Man
|
Wu Yang
Findings of the Association for Computational Linguistics: ACL 2024
Speech-to-text (S2T) generation systems frequently face challenges in low-resource scenarios, primarily due to the lack of extensive labeled datasets. One emerging solution is constructing virtual training samples by interpolating inputs and labels, which has notably enhanced system generalization in other domains. Despite its potential, this technique’s application in S2T tasks has remained under-explored. In this paper, we delve into the utility of interpolation augmentation, guided by several pivotal questions. Our findings reveal that employing an appropriate strategy in interpolation augmentation significantly enhances performance across diverse tasks, architectures, and data scales, offering a promising avenue for more robust S2T systems in resource-constrained settings.
2022
Learning When to Translate for Streaming Speech
Qian Dong
|
Yaoming Zhu
|
Mingxuan Wang
|
Lei Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
How to find proper moments to generate partial sentence translation given a streaming speech input? Existing approaches waiting-and-translating for a fixed duration often break the acoustic units in speech, since the boundaries between acoustic units in speech are not even. In this paper, we propose MoSST, a simple yet effective method for translating streaming speech content. Given a usually long speech sequence, we develop an efficient monotonic segmentation module inside an encoder-decoder model to accumulate acoustic information incrementally and detect proper speech unit boundaries for the input in speech translation task. Experiments on multiple translation directions of the MuST-C dataset show that outperforms existing methods and achieves the best trade-off between translation quality (BLEU) and latency. Our code is available at https://github.com/dqqcasia/mosst.