Puxuan Yu


2025

pdf bib
Explain then Rank: Scale Calibration of Neural Rankers Using Natural Language Explanations from LLMs
Puxuan Yu | Daniel Cohen | Hemank Lamba | Joel R. Tetreault | Alejandro Jaimes
Findings of the Association for Computational Linguistics: ACL 2025

In search settings, calibrating the scores during the ranking process to quantities such as click-through rates or relevance levels enhances a system’s usefulness and trustworthiness for downstream users. While previous research has improved this notion of calibration for low complexity learning-to-rank models, the larger data demands and parameter count specific to modern neural text rankers produce unique obstacles that hamper the efficacy of methods intended for the learning-to-rank setting.This paper proposes exploiting large language models (LLMs) to provide relevance and uncertainty signals for these neural text rankers to produce scale-calibrated scores through Monte Carlo sampling of natural language explanations (NLEs). Our approach transforms the neural ranking task from ranking textual query-document pairs to ranking corresponding synthesized NLEs. Comprehensive experiments on two popular document ranking datasets show that the NLE-based calibration approach consistently outperforms past calibration methods and LLM-based methods for ranking, calibration, and query performance prediction tasks.

2024

pdf bib
Language Concept Erasure for Language-invariant Dense Retrieval
Zhiqi Huang | Puxuan Yu | Shauli Ravfogel | James Allan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Multilingual models aim for language-invariant representations but still prominently encode language identity. This, along with the scarcity of high-quality parallel retrieval data, limits their performance in retrieval. We introduce LANCER, a multi-task learning framework that improves language-invariant dense retrieval by reducing language-specific signals in the embedding space. Leveraging the notion of linear concept erasure, we design a loss function that penalizes cross-correlation between representations and their language labels. LANCER leverages only English retrieval data and general multilingual corpora, training models to focus on language-invariant retrieval by semantic similarity without necessitating a vast parallel corpus. Experimental results on various datasets show our method consistently improves over baselines, with extensive analyses demonstrating greater language agnosticism.