Pengwei Wang


2025

pdf bib
MapNav: A Novel Memory Representation via Annotated Semantic Maps for VLM-based Vision-and-Language Navigation
Lingfeng Zhang | Xiaoshuai Hao | Qinwen Xu | Qiang Zhang | Xinyao Zhang | Pengwei Wang | Jing Zhang | Zhongyuan Wang | Shanghang Zhang | Renjing Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Vision-language navigation (VLN) is a key task in Embodied AI, requiring agents to navigate diverse and unseen environments while following natural language instructions. Traditional approaches rely heavily on historical observations as spatio-temporal contexts for decision making, leading to significant storage and computational overhead. In this paper, we introduce MapNav, a novel end-to-end VLN model that leverages Annotated Semantic Map (ASM) to replace historical frames. Specifically, our approach constructs a top-down semantic map at the start of each episode and update it at each timestep, allowing for precise object mapping and structured navigation information. Then, we enhance this map with explicit textual labels for key regions, transforming abstract semantics into clear navigation cues and generate our ASM. MapNav agent using the constructed ASM as input, and use the powerful end-to-end capabilities of VLM to empower VLN. Extensive experiments demonstrate that MapNav achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, validating the effectiveness of our method. We will release our ASM generation source code and dataset to ensure reproducibility, contributing valuable resources to the field. We believe that our proposed MapNav can be used as a new memory representation method in VLN, paving the way for future research in this field.

2022

pdf bib
History-Aware Hierarchical Transformer for Multi-session Open-domain Dialogue System
Tong Zhang | Yong Liu | Boyang Li | Zhiwei Zeng | Pengwei Wang | Yuan You | Chunyan Miao | Lizhen Cui
Findings of the Association for Computational Linguistics: EMNLP 2022

With the evolution of pre-trained language models, current open-domain dialogue systems have achieved great progress in conducting one-session conversations. In contrast, Multi-Session Conversation (MSC), which consists of multiple sessions over a long term with the same user, is under-investigated. In this paper, we propose History-Aware Hierarchical Transformer (HAHT) for multi-session open-domain dialogue. HAHT maintains a long-term memory of history conversations and utilizes history information to understand current conversation context and generate well-informed and context-relevant responses. Specifically, HAHT first encodes history conversation sessions hierarchically into a history memory. Then, HAHT leverages historical information to facilitate the understanding of the current conversation context by encoding the history memory together with the current context with attention-based mechanisms. Finally, to explicitly utilize historical information, HAHT uses a history-aware response generator that switches between a generic vocabulary and a history-aware vocabulary. Experimental results on a large-scale MSC dataset suggest that the proposed HAHT model consistently outperforms baseline models. Human evaluation results support that HAHT generates more human-like, context-relevant, and history-relevant responses than baseline models.