Minjie Qiang


2025

pdf bib
Exploring Unified Training Framework for Multimodal User Profiling
Minjie Qiang | Zhongqing Wang | Shoushan Li | Guodong Zhou
Proceedings of the 31st International Conference on Computational Linguistics

With the emergence of social media and e-commerce platforms, accurate user profiling has become increasingly vital for recommendation systems and personalized services. Recent studies have focused on generating detailed user profiles by extracting various aspects of user attributes from textual reviews. Nevertheless, these investigations have not fully exploited the potential of the abundant multimodal data at hand. In this study, we propose a novel task called multimodal user profiling. This task emphasizes the utilization of both review texts and their accompanying images to create comprehensive user profiles. By integrating textual and visual data, we leverage their complementary strengths, enabling the generation of more holistic user representations. Additionally, we explore a unified joint training framework with various multimodal training strategies that incorporate users’ historical review texts and images for user profile generation. Our experimental results underscore the significance of multimodal data in enhancing user profile generation and demonstrate the effectiveness of the proposed unified joint training approach.

pdf bib
Exploring Hybrid Sampling Inference for Aspect-based Sentiment Analysis
Xiaoyi Bao | Minjie Qiang | Jinghang Gu | Zhongqing Wang | Chu-Ren Huang
Findings of the Association for Computational Linguistics: NAACL 2025

As the training of large language models (LLMs) will encounter high computational costs, massive works are now focusing on inference. Their methods can be generally summarised as re-sampling the target multiple times and performing a vote upon the outputs. Despite bringing significant performance improvements, it is a high-cost method that requires multiple sampling with the preset size. In this paper, we propose a simple yet efficient inference strategies named __Hybrid Sampling__ that combining both multiple and single sampling to greatly reduce the cost of multiple sampling without sacrificing performance. __Hybrid Sampling__ could dynamically choose the essential part of generated sequence for multiple sampling and proceed the rest with single sampling, achieving a performance-cost balance. Extensive experiments in several benchmarks underscore the robustness and effectiveness of our proposed Hybrid Sampling and more importantly, it is much faster.

pdf bib
Exploring Knowledge Filtering for Retrieval-Augmented Discriminative Tasks
Minjie Qiang | Zhongqing Wang | Xiaoyi Bao | HaoYuan Ma | Shoushan Li | Guodong Zhou
Findings of the Association for Computational Linguistics: ACL 2025

Retrieval-augmented methods have achieved remarkable advancements in alleviating the hallucination of large language models.Nevertheless, the introduction of external knowledge does not always lead to the expected improvement in model performance, as irrelevant or harmful information present in the retrieved knowledge can compromise the prediction process.To address these challenges, we propose a novel framework aimed at improving model performance by incorporating knowledge filtering and prediction fusion mechanisms.In particular, our approach first employs a perplexity-based annotation method to collect training data.Then, we design four distinct strategies to filter out harmful retrieved knowledge.Finally, we integrate the filtered knowledge to generate the final result via batch-wise predictions.We conduct extensive experiments across multiple discriminative task datasets to evaluate the proposed framework.The results demonstrate that our framework can significantly enhance the performance of models on discriminative tasks.

pdf bib
One-Dimensional Object Detection for Streaming Text Segmentation of Meeting Dialogue
Rui He | Zhongqing Wang | Minjie Qiang | Hongling Wang | Yifan.zhang Yifan.zhang | Hua Xu | Shuai Fan | Guodong Zhou
Findings of the Association for Computational Linguistics: ACL 2025

Dialogue text segmentation aims to partition dialogue content into consecutive paragraphs based on themes or logic, enhancing its comprehensibility and manageability. Current text segmentation models, when applied directly to STS (Streaming Text Segmentation), exhibit numerous limitations, such as imbalances in labels that affect the stability of model training, and discrepancies between the model’s training tasks (sentence classification) and the actual text segmentation that limit the model’s segmentation capabilities.To address these challenges, we first implement STS for the first time using a sliding window-based segmentation method. Secondly, we employ two different levels of sliding window-based balanced label strategies to stabilize the training process of the streaming segmentation model and enhance training convergence speed. Finally, by adding a one-dimensional bounding-box regression task for text sequences within the window, we restructure the training approach of STS tasks, shifting from sentence classification to sequence segmentation, thereby aligning the training objectives with the task objectives, which further enhanced the model’s performance. Extensive experimental results demonstrate that our method is robust, controllable, and achieves state-of-the-art performance.

2024

pdf bib
Employing Glyphic Information for Chinese Event Extraction with Vision-Language Model
Xiaoyi Bao | Jinghang Gu | Zhongqing Wang | Minjie Qiang | Chu-Ren Huang
Findings of the Association for Computational Linguistics: EMNLP 2024

As a complex task that requires rich information input, features from various aspects have been utilized in event extraction. However, most of the previous works ignored the value of glyph, which could contain enriched semantic information and can not be fully expressed by the pre-trained embedding in hieroglyphic languages like Chinese. We argue that, compared with combining the sophisticated textual features, glyphic information from visual modality could provide us with extra and straight semantic information in extracting events. Motivated by this, we propose a glyphic multi-modal Chinese event extraction model with hieroglyphic images to capture the intra- and inter-character morphological structure from the sequence. Extensive experiments build a new state-of-the-art performance in the ACE2005 Chinese and KBP Eval 2017 dataset, which underscores the effectiveness of our proposed glyphic event extraction model, and more importantly, the glyphic feature can be obtained at nearly zero cost.