Minh Ngoc Dinh
2025
QQSUM: A Novel Task and Model of Quantitative Query-Focused Summarization for Review-based Product Question Answering
An Quang Tang
|
Xiuzhen Zhang
|
Minh Ngoc Dinh
|
Zhuang Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Review-based Product Question Answering (PQA) allows e-commerce platforms to automatically address customer queries by leveraging insights from user reviews. However, existing PQA systems generate answers with only a single perspective, failing to capture the diversity of customer opinions. In this paper we introduce a novel task Quantitative Query-Focused Summarization (QQSUM), which aims to summarize diverse customer opinions into representative Key Points (KPs) and quantify their prevalence to effectively answer user queries. While Retrieval-Augmented Generation (RAG) shows promise for PQA, its generated answers still fall short of capturing the full diversity of viewpoints. To tackle this challenge, our model QQSUM-RAG, which extends RAG, employs few-shot learning to jointly train a KP-oriented retriever and a KP summary generator, enabling KP-based summaries that capture diverse and representative opinions. Experimental results demonstrate that QQSUM-RAG achieves superior performance compared to state-of-the-art RAG baselines in both textual quality and quantification accuracy of opinions. Our source code is available at: https://github.com/antangrocket1312/QQSUMM
2024
IgnitionInnovators at “Discharge Me!”: Chain-of-Thought Instruction Finetuning Large Language Models for Discharge Summaries
An Quang Tang
|
Xiuzhen Zhang
|
Minh Ngoc Dinh
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
This paper presents our proposed approach to the Discharge Me! shared task, collocated with the 23th Workshop on Biomedical Natural Language Processing (BioNLP). In this work, we develop an LLM-based framework for solving the Discharge Summary Documentation (DSD) task, i.e., generating the two critical target sections ‘Brief Hospital Course’ and ‘Discharge Instructions’ in the discharge summary. By streamlining the recent instruction-finetuning process on LLMs, we explore several prompting strategies for optimally adapting LLMs to specific generation task of DSD. Experimental results show that providing a clear output structure, complimented by a set of comprehensive Chain-of-Thoughts (CoT) questions, effectively improves the model’s reasoning capability, and thereby, enhancing the structural correctness and faithfulness of clinical information in the generated text. Source code is available at: https://anonymous.4open.science/r/Discharge_LLM-A233