Ming Zhang


2025

pdf bib
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chengwu Liu | Ye Yuan | Yichun Yin | Yan Xu | Xin Xu | Zaoyu Chen | Yasheng Wang | Lifeng Shang | Qun Liu | Ming Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that “the gold standard for supporting a mathematical claim is to provide a proof”. We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.

pdf bib
Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention
Jingyang Yuan | Huazuo Gao | Damai Dai | Junyu Luo | Liang Zhao | Zhengyan Zhang | Zhenda Xie | Yuxing Wei | Lean Wang | Zhiping Xiao | Yuqing Wang | Chong Ruan | Ming Zhang | Wenfeng Liang | Wangding Zeng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Long-context modeling is crucial for next-generation language models, yet the high computational cost of standard attention mechanisms poses significant computational challenges. Sparse attention offers a promising direction for improving efficiency while maintaining model capabilities. We present NSA, a Natively trained Sparse Attention mechanism that integrates algorithmic innovations with hardware-aligned optimizations to achieve efficient long-context modeling. NSA employs a dynamic hierarchical sparse strategy, combining coarse-grained token compression with fine-grained token selection to preserve both global context awareness and local precision. Our approach advances sparse attention design with two key innovations: (1) We achieve substantial speedups through arithmetic intensity-balanced algorithm design, with implementation optimizations for modern hardware. (2) We enable end-to-end training, reducing pretraining computation without sacrificing model performance. As shown in Figure 1, experiments show the model pretrained with NSA maintains or exceeds Full Attention models across general benchmarks, long-context tasks, and instruction-based reasoning. Meanwhile, NSA achieves substantial speedups over Full Attention on 64k-length sequences across decoding, forward propagation, and backward propagation, validating its efficiency throughout the model lifecycle.

pdf bib
FinMME: Benchmark Dataset for Financial Multi-Modal Reasoning Evaluation
Junyu Luo | Zhizhuo Kou | Liming Yang | Xiao Luo | Jinsheng Huang | Zhiping Xiao | Jingshu Peng | Chengzhong Liu | Jiaming Ji | Xuanzhe Liu | Sirui Han | Ming Zhang | Yike Guo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Large Language Models (MLLMs) have experienced rapid development in recent years. However, in the financial domain, there is a notable lack of effective and specialized multimodal evaluation datasets. To advance the development of MLLMs in the finance domain, we introduce FinMME, encompassing more than 11,000 high-quality financial research samples across 18 financial domains and 6 asset classes, featuring 10 major chart types and 21 subtypes. We ensure data quality through 20 annotators and carefully designed validation mechanisms. Additionally, we develop FinScore, an evaluation system incorporating hallucination penalties and multi-dimensional capability assessment to provide an unbiased evaluation. Extensive experimental results demonstrate that even state-of-the-art models like GPT-4o exhibit unsatisfactory performance on FinMME, highlighting its challenging nature. The benchmark exhibits high robustness with prediction variations under different prompts remaining below 1%, demonstrating superior reliability compared to existing datasets. Our dataset and evaluation protocol are available at https://huggingface.co/datasets/luojunyu/FinMME and https://github.com/luo-junyu/FinMME.

pdf bib
A Survey on Efficient Large Language Model Training: From Data-centric Perspectives
Junyu Luo | Bohan Wu | Xiao Luo | Zhiping Xiao | Yiqiao Jin | Rong-Cheng Tu | Nan Yin | Yifan Wang | Jingyang Yuan | Wei Ju | Ming Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Post-training of Large Language Models (LLMs) is crucial for unlocking their task generalization potential and domain-specific capabilities. However, the current LLM post-training paradigm faces significant data challenges, including the high costs of manual annotation and diminishing marginal returns on data scales. Therefore, achieving data-efficient post-training has become a key research question. In this paper, we present the first systematic survey of data-efficient LLM post-training from a data-centric perspective. We propose a taxonomy of data-efficient LLM post-training methods, covering data selection, data quality enhancement, synthetic data generation, data distillation and compression, and self-evolving data ecosystems. We summarize representative approaches in each category and outline future research directions. By examining the challenges in data-efficient LLM post-training, we highlight open problems and propose potential research avenues. We hope our work inspires further exploration into maximizing the potential of data utilization in large-scale model training. Paper List: https://github.com/luo-junyu/Awesome-Data-Efficient-LLM

pdf bib
How Do Large Language Models Perform in Dynamical System Modeling
Xiao Luo | Binqi Chen | Haixin Wang | Zhiping Xiao | Ming Zhang | Yizhou Sun
Findings of the Association for Computational Linguistics: NAACL 2025

This paper studies the problem of dynamical system modeling, which involves the evolution of multiple interacting objects. Recent data-driven methods often utilize graph neural networks (GNNs) to learn these interactions by optimizing the neural network in an end-to-end fashion. While large language models (LLMs) have shown exceptional zero-shot performance across various applications, their potential for modeling dynamical systems has not been extensively explored. In this work, we design prompting techniques for dynamical system modeling and systematically evaluate the capabilities of LLMs on two tasks, including dynamic forecasting and relational reasoning. An extensive benchmark LLM4DS across nine datasets is built for performance comparison. Our extensive experiments yield several key findings: (1) LLMs demonstrate competitive performance without training compared to state-of-the-art methods in dynamical system modeling. (2) LLMs effectively infer complex interactions among objects to capture system evolution. (3) Prompt engineering plays a crucial role in enabling LLMs to accurately understand and predict the evolution of systems.

pdf bib
Semi-supervised Fine-tuning for Large Language Models
Junyu Luo | Xiao Luo | Xiusi Chen | Zhiping Xiao | Wei Ju | Ming Zhang
Findings of the Association for Computational Linguistics: NAACL 2025

Supervised fine-tuning (SFT) is crucial in adapting large language models (LLMs) to a specific domain or task. However, only a limited amount of labeled data is available in practical applications, which poses a severe challenge for SFT in yielding satisfactory results. Therefore, a data-efficient framework that can fully exploit labeled and unlabeled data for LLM fine-tuning is highly anticipated.Towards this end, we introduce a **semi-supervised fine-tuning (SemiFT)** task and a framework named **SemiEvol** for LLM alignment from a propagate-and-select manner. For knowledge propagation, SemiEvol adopts a bi-level approach, propagating knowledge from labeled data to unlabeled data through both in-weight and in-context methods. For knowledge selection, SemiEvol incorporates a collaborative learning mechanism, selecting higher-quality pseudo-response samples. We conducted experiments using GPT-4o-mini and Llama-3.1 on seven general or domain-specific datasets, demonstrating significant improvements in model performance on target data. Furthermore, we compared SemiEvol with SFT and self-evolution methods, highlighting its practicality in hybrid data scenarios. Github Repository: [https://github.com/luo-junyu/SemiEvol](https://github.com/luo-junyu/SemiEvol).

pdf bib
PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Ming Zhang | Yuhui Wang | Yujiong Shen | Tingyi Yang | Changhao Jiang | Yilong Wu | Shihan Dou | Qinhao Chen | Zhiheng Xi | Zhihao Zhang | Yi Dong | Zhen Wang | Zhihui Fei | Mingyang Wan | Tao Liang | Guojun Ma | Qi Zhang | Tao Gui | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2025

Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct **P**rocess **F**low **Dial**ogue (**PFDial**) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models’ performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.

pdf bib
Embracing Large Language Models in Traffic Flow Forecasting
Yusheng Zhao | Xiao Luo | Haomin Wen | Zhiping Xiao | Wei Ju | Ming Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Traffic flow forecasting aims to predict future traffic flows based on historical traffic conditions and the road network. It is an important problem in intelligent transportation systems, with a plethora of methods being proposed. Existing efforts mainly focus on capturing and utilizing spatio-temporal dependencies to predict future traffic flows. Though promising, they fall short in adapting to test-time environmental changes in traffic conditions. To tackle this challenge, we propose to introduce large language models (LLMs) to help traffic flow forecasting and design a novel method named Large Language Model Enhanced Traffic Flow Predictor (LEAF). LEAF adopts two branches, capturing different spatio-temporal relations using graph and hypergraph structures, respectively. The two branches are first pre-trained individually, and during test time, they yield different predictions. Based on these predictions, a large language model is used to select the most likely result. Then, a ranking loss is applied as the learning objective to enhance the prediction ability of the two branches. Extensive experiments on several datasets demonstrate the effectiveness of LEAF. Our code is available at https://github.com/YushengZhao/LEAF.

pdf bib
MMEvalPro: Calibrating Multimodal Benchmarks Towards Trustworthy and Efficient Evaluation
Jinsheng Huang | Liang Chen | Taian Guo | Fu Zeng | Yusheng Zhao | Bohan Wu | Ye Yuan | Haozhe Zhao | Zhihui Guo | Yichi Zhang | Jingyang Yuan | Wei Ju | Luchen Liu | Tianyu Liu | Baobao Chang | Ming Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Multimodal Models (LMMs) exhibit impressive cross-modal understanding and reasoning abilities, often assessed through multiple-choice questions (MCQs) that include an image, a question, and several options. However, many benchmarks used for such evaluations suffer from systematic biases. Remarkably, Large Language Models (LLMs) without any visual perception capabilities achieve non-trivial performance, undermining the credibility of these evaluations. To address this issue while maintaining the efficiency of MCQ evaluations, we propose MMEVALPRO, a benchmark designed to avoid Type-I errors through a trilogy evaluation pipeline and more rigorous metrics. For each original question from existing benchmarks, human annotators augment it by creating one perception question and one knowledge anchor question through a meticulous annotation process. MMEVALPRO comprises 2,138 question triplets, totaling 6,414 distinct questions. Two-thirds of these questions are manually labeled by human experts, while the rest are sourced from existing benchmarks (MMMU, ScienceQA, and MathVista). Compared with the existing benchmarks, our experiments with the latest LLMs and LMMs demonstrate that MMEVALPRO is **more challenging** (the best LMM lags behind human performance by 31.73%, compared to an average gap of 8.03% in previous benchmarks) and **more trustworthy** (the best LLM trails the best LMM by 23.09%, whereas the gap for previous benchmarks is just 14.64%). Our in-depth analysis explains the reason for the large performance gap and justifies the trustworthiness of evaluation, underscoring its significant potential for advancing future research.

2024

pdf bib
TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
Ming Zhang | Caishuang Huang | Yilong Wu | Shichun Liu | Huiyuan Zheng | Yurui Dong | Yujiong Shen | Shihan Dou | Jun Zhao | Junjie Ye | Qi Zhang | Tao Gui | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, **TransferTOD**, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model using full-parameter fine-tuning called **TransferTOD-7B**, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.

pdf bib
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning Through Trap Problems
Jun Zhao | Jingqi Tong | Yurong Mou | Ming Zhang | Qi Zhang | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent “unseen” cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. We find that LLMs’ performance can be improved through the above external intervention. Overall, systematic compositionality remains an open challenge for large language models.

pdf bib
Measuring Social Norms of Large Language Models
Ye Yuan | Kexin Tang | Jianhao Shen | Ming Zhang | Chenguang Wang
Findings of the Association for Computational Linguistics: NAACL 2024

We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models’ ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements.

pdf bib
Multi-modal Semantic Understanding with Contrastive Cross-modal Feature Alignment
Ming Zhang | Ke Chang | Yunfang Wu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multi-modal semantic understanding requires integrating information from different modalities to extract users’ real intention behind words. Most previous work applies a dual-encoder structure to separately encode image and text, but fails to learn cross-modal feature alignment, making it hard to achieve cross-modal deep information interaction. This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment, which projects the features derived from different modalities into a unified deep space. On multi-modal sarcasm detection (MMSD) and multi-modal sentiment analysis (MMSA) tasks, the experimental results show that our proposed model significantly outperforms several baselines, and our feature alignment strategy brings obvious performance gain over models with different aggregating methods and models even enriched with knowledge. More importantly, our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks. Our source codes are available at https://github.com/ChangKe123/CLFA.

2023

pdf bib
MolXPT: Wrapping Molecules with Text for Generative Pre-training
Zequn Liu | Wei Zhang | Yingce Xia | Lijun Wu | Shufang Xie | Tao Qin | Ming Zhang | Tie-Yan Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Generative pre-trained Transformer (GPT) has demonstrates its great success in natural language processing and related techniques have been adapted into molecular modeling. Considering that text is the most important record for scientific discovery, in this paper, we propose MolXPT, a unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text. Briefly, we detect the molecule names in each sequence and replace them to the corresponding SMILES. In this way, the SMILES could leverage the information from surrounding text, and vice versa. The above wrapped sequences, text sequences from PubMed and SMILES sequences from PubChem are all fed into a language model for pre-training. Experimental results demonstrate that MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet, performs comparably to the best model in text-molecule translation while using less than half of its parameters, and enables zero-shot molecular generation without finetuning.

pdf bib
TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative Language Models
Jing Xiong | Jianhao Shen | Ye Yuan | Haiming Wang | Yichun Yin | Zhengying Liu | Lin Li | Zhijiang Guo | Qingxing Cao | Yinya Huang | Chuanyang Zheng | Xiaodan Liang | Ming Zhang | Qun Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automated theorem proving (ATP) has become an appealing domain for exploring the reasoning ability of the recent successful generative language models. However, current ATP benchmarks are mainly focus on symbolic inference, but rarely involve the understanding of complex number combination reasoning. In this work, we propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proof but also evaluates a generative LM’s reasoning ability on formulas and capability to manipulate, group, and factor number terms. We gather trigonometric expressions and their reduced forms from web, annotate the simplification process manually, and translate it into the “Lean” formal language system. We then automatically generate additional examples from the annotated samples to expand the dataset. Furthermore, we also create three automatically generated training and testing datasets of varying difficulty and distributions. Our extensive experiments show our proposed TRIGO poses a new challenge for advanced generative LM’s including GPT-4 which is pre-trained on a considerable amount of open-source formal theorem-proving language data, and provide a new tool to study the generative LM’s ability on both formal and mathematical reasoning.

2022

pdf bib
Focus-Driven Contrastive Learning for Medical Question Summarization
Ming Zhang | Shuai Dou | Ziyang Wang | Yunfang Wu
Proceedings of the 29th International Conference on Computational Linguistics

Automatic medical question summarization can significantly help the system to understand consumer health questions and retrieve correct answers. The Seq2Seq model based on maximum likelihood estimation (MLE) has been applied in this task, which faces two general problems: the model can not capture well question focus and and the traditional MLE strategy lacks the ability to understand sentence-level semantics. To alleviate these problems, we propose a novel question focus-driven contrastive learning framework (QFCL). Specially, we propose an easy and effective approach to generate hard negative samples based on the question focus, and exploit contrastive learning at both encoder and decoder to obtain better sentence level representations. On three medical benchmark datasets, our proposed model achieves new state-of-the-art results, and obtains a performance gain of 5.33, 12.85 and 3.81 points over the baseline BART model on three datasets respectively. Further human judgement and detailed analysis prove that our QFCL model learns better sentence representations with the ability to distinguish different sentence meanings, and generates high-quality summaries by capturing question focus.

pdf bib
MetaFill: Text Infilling for Meta-Path Generation on Heterogeneous Information Networks
Zequn Liu | Kefei Duan | Junwei Yang | Hanwen Xu | Ming Zhang | Sheng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Heterogeneous information network (HIN) is essential to study complicated networks containing multiple edge types and node types. Meta-path, a sequence of node types and edge types, is the core technique to embed HINs. Since manually curating meta-paths is time-consuming, there is a pressing need to develop automated meta-path generation approaches. Existing meta-path generation approaches cannot fully exploit the rich textual information in HINs, such as node names and edge type names. To address this problem, we propose MetaFill, a text-infilling-based approach for meta-path generation. The key idea of MetaFill is to formulate meta-path identification problem as a word sequence infilling problem, which can be advanced by pretrained language models (PLMs). We observed the superior performance of MetaFill against existing meta-path generation methods and graph embedding methods that do not leverage meta-paths in both link prediction and node classification on two real-world HIN datasets. We further demonstrated how MetaFill can accurately classify edges in the zero-shot setting, where existing approaches cannot generate any meta-paths. MetaFill exploits PLMs to generate meta-paths for graph embedding, opening up new avenues for language model applications in graph analysis.

pdf bib
Pathway2Text: Dataset and Method for Biomedical Pathway Description Generation
Junwei Yang | Zequn Liu | Ming Zhang | Sheng Wang
Findings of the Association for Computational Linguistics: NAACL 2022

Biomedical pathways have been extensively used to characterize the mechanism of complex diseases. One essential step in biomedical pathway analysis is to curate the description of a pathway based on its graph structure and node features. Neural text generation could be a plausible technique to circumvent the tedious manual curation. In this paper, we propose a new dataset Pathway2Text, which contains 2,367 pairs of biomedical pathways and textual descriptions. All pathway graphs are experimentally derived or manually curated. All textual descriptions are written by domain experts. We form this problem as a Graph2Text task and propose a novel graph-based text generation approach kNN-Graph2Text, which explicitly exploited descriptions of similar graphs to generate new descriptions. We observed substantial improvement of our method on both Graph2Text and the reverse task of Text2Graph. We further illustrated how our dataset can be used as a novel benchmark for biomedical named entity recognition. Collectively, we envision our method will become an important benchmark for evaluating Graph2Text methods and advance biomedical research for complex diseases.

pdf bib
PALT: Parameter-Lite Transfer of Language Models for Knowledge Graph Completion
Jianhao Shen | Chenguang Wang | Ye Yuan | Jiawei Han | Heng Ji | Koushik Sen | Ming Zhang | Dawn Song
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper presents a parameter-lite transfer learning approach of pretrained language models (LM) for knowledge graph (KG) completion. Instead of finetuning, which modifies all LM parameters, we only tune a few new parameters while keeping the original LM parameters fixed. We establish this via reformulating KG completion as a “fill-in-the-blank” task, and introducing a parameter-lite encoder on top of the original LMs. We show that, by tuning far fewer parameters than finetuning, LMs transfer non-trivially to most tasks and reach competitiveness with prior state-of-the-art approaches. For instance, we outperform the fully finetuning approaches on a KG completion benchmark by tuning only 1% of the parameters.

2021

pdf bib
Expanding the JHU Bible Corpus for Machine Translation of the Indigenous Languages of North America
Garrett Nicolai | Edith Coates | Ming Zhang | Miikka Silfverberg
Proceedings of the 4th Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Papers)

pdf bib
Graphine: A Dataset for Graph-aware Terminology Definition Generation
Zequn Liu | Shukai Wang | Yiyang Gu | Ruiyi Zhang | Ming Zhang | Sheng Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Precisely defining the terminology is the first step in scientific communication. Developing neural text generation models for definition generation can circumvent the labor-intensity curation, further accelerating scientific discovery. Unfortunately, the lack of large-scale terminology definition dataset hinders the process toward definition generation. In this paper, we present a large-scale terminology definition dataset Graphine covering 2,010,648 terminology definition pairs, spanning 227 biomedical subdisciplines. Terminologies in each subdiscipline further form a directed acyclic graph, opening up new avenues for developing graph-aware text generation models. We then proposed a novel graph-aware definition generation model Graphex that integrates transformer with graph neural network. Our model outperforms existing text generation models by exploiting the graph structure of terminologies. We further demonstrated how Graphine can be used to evaluate pretrained language models, compare graph representation learning methods and predict sentence granularity. We envision Graphine to be a unique resource for definition generation and many other NLP tasks in biomedicine.

pdf bib
UniKER: A Unified Framework for Combining Embedding and Definite Horn Rule Reasoning for Knowledge Graph Inference
Kewei Cheng | Ziqing Yang | Ming Zhang | Yizhou Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge graph inference has been studied extensively due to its wide applications. It has been addressed by two lines of research, i.e., the more traditional logical rule reasoning and the more recent knowledge graph embedding (KGE). Several attempts have been made to combine KGE and logical rules for better knowledge graph inference. Unfortunately, they either simply treat logical rules as additional constraints into KGE loss or use probabilistic model to approximate the exact logical inference (i.e., MAX-SAT). Even worse, both approaches need to sample ground rules to tackle the scalability issue, as the total number of ground rules is intractable in practice, making them less effective in handling logical rules. In this paper, we propose a novel framework UniKER to address these challenges by restricting logical rules to be definite Horn rules, which can fully exploit the knowledge in logical rules and enable the mutual enhancement of logical rule-based reasoning and KGE in an extremely efficient way. Extensive experiments have demonstrated that our approach is superior to existing state-of-the-art algorithms in terms of both efficiency and effectiveness.

pdf bib
Generate & Rank: A Multi-task Framework for Math Word Problems
Jianhao Shen | Yichun Yin | Lin Li | Lifeng Shang | Xin Jiang | Ming Zhang | Qun Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% to 85.4%) higher than the state-of-the-art. Code could be found at https://github.com/huawei-noah/noah-research.

2020

pdf bib
Learning to Customize Model Structures for Few-shot Dialogue Generation Tasks
Yiping Song | Zequn Liu | Wei Bi | Rui Yan | Ming Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.

pdf bib
PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction
Yichun Yin | Chenguang Wang | Ming Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.

2017

pdf bib
Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Document-level multi-aspect sentiment classification is an important task for customer relation management. In this paper, we model the task as a machine comprehension problem where pseudo question-answer pairs are constructed by a small number of aspect-related keywords and aspect ratings. A hierarchical iterative attention model is introduced to build aspectspecific representations by frequent and repeated interactions between documents and aspect questions. We adopt a hierarchical architecture to represent both word level and sentence level information, and use the attention operations for aspect questions and documents alternatively with the multiple hop mechanism. Experimental results on the TripAdvisor and BeerAdvocate datasets show that our model outperforms classical baselines. We will release our code and data for the method replicability.

pdf bib
Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song | Zhiliang Tian | Dongyan Zhao | Ming Zhang | Rui Yan
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural conversation systems, typically using sequence-to-sequence (seq2seq) models, are showing promising progress recently. However, traditional seq2seq suffer from a severe weakness: during beam search decoding, they tend to rank universal replies at the top of the candidate list, resulting in the lack of diversity among candidate replies. Maximum Marginal Relevance (MMR) is a ranking algorithm that has been widely used for subset selection. In this paper, we propose the MMR-BS decoding method, which incorporates MMR into the beam search (BS) process of seq2seq. The MMR-BS method improves the diversity of generated replies without sacrificing their high relevance with the user-issued query. Experiments show that our proposed model achieves the best performance among other comparison methods.

pdf bib
NNEMBs at SemEval-2017 Task 4: Neural Twitter Sentiment Classification: a Simple Ensemble Method with Different Embeddings
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

Recently, neural twitter sentiment classification has become one of state-of-thearts, which relies less feature engineering work compared with traditional methods. In this paper, we propose a simple and effective ensemble method to further boost the performances of neural models. We collect several word embedding sets which are publicly released (often are learned on different corpus) or constructed by running Skip-gram on released large-scale corpus. We make an assumption that different word embeddings cover different words and encode different semantic knowledge, thus using them together can improve the generalizations and performances of neural models. In the SemEval 2017, our method ranks 1st in Accuracy, 5th in AverageR. Meanwhile, the additional comparisons demonstrate the superiority of our model over these ones based on only one word embedding set. We release our code for the method duplicability.

pdf bib
Syntax Aware LSTM model for Semantic Role Labeling
Feng Qian | Lei Sha | Baobao Chang | Lu-chen Liu | Ming Zhang
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing

In Semantic Role Labeling (SRL) task, the tree structured dependency relation is rich in syntax information, but it is not well handled by existing models. In this paper, we propose Syntax Aware Long Short Time Memory (SA-LSTM). The structure of SA-LSTM changes according to dependency structure of each sentence, so that SA-LSTM can model the whole tree structure of dependency relation in an architecture engineering way. Experiments demonstrate that on Chinese Proposition Bank (CPB) 1.0, SA-LSTM improves F1 by 2.06% than ordinary bi-LSTM with feature engineered dependency relation information, and gives state-of-the-art F1 of 79.92%. On English CoNLL 2005 dataset, SA-LSTM brings improvement (2.1%) to bi-LSTM model and also brings slight improvement (0.3%) when added to the state-of-the-art model.

2016

pdf bib
Chinese Couplet Generation with Neural Network Structures
Rui Yan | Cheng-Te Li | Xiaohua Hu | Ming Zhang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf bib
Paraphrasing Adaptation for Web Search Ranking
Chenguang Wang | Nan Duan | Ming Zhou | Ming Zhang
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2011

pdf bib
A Fast and Accurate Method for Approximate String Search
Ziqi Wang | Gu Xu | Hang Li | Ming Zhang
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

Search
Co-authors
Fix author