Real-world open-domain questions can be complex, especially when answering them requires integrating information from multiple sources. Effectively identifying the necessary information involves *aligning* it with the available data and its organization. However, existing RAG solutions address the alignment problem in a limited manner. Using off-the-shelf LLMs for question decomposition lacks awareness of the available data and its structure, often resulting in suboptimal retrieval performance. Alternatively, iteratively generating follow-up queries and interacting with the data collection, as explored in agentic RAG approaches, shows potential but is often *inefficient* since each successive query depends on previous results rather than being guided by the overall organization of the available data. To address the *alignment* problem, we introduce an LLM-based retrieval method — ARM, designed to better align questions with the organization of the data collection. Instead of solely matching query utterance, ARM explores *relationships among data objects*, enabling a retrieve-all-at-once solution for complex queries. Experimental results demonstrate that ARM significantly outperforms existing RAG methods on various complex open-domain QA tasks across multiple modalities, achieving superior retrieval performance and downstream accuracy while significantly lowering monetary costs.
Due to the increasing productivity in the scientific community, it is difficult to keep up with the literature without the assistance of AI methods. This paper evaluates various methods for extracting mathematical model variables from epidemiological studies, such as ‘infection rate (𝛼),” ‘recovery rate (𝛾),” and ‘mortality rate (𝜇).” Variable extraction appears to be a basic task, but plays a pivotal role in recovering models from scientific literature. Once extracted, we can use these variables for automatic mathematical modeling, simulation, and replication of published results. We also introduce a benchmark dataset comprising manually-annotated variable descriptions and variable values extracted from scientific papers. Our analysis shows that LLM-based solutions perform the best. Despite the incremental benefits of combining rule-based extraction outputs with LLMs, the leap in performance attributed to the transfer-learning and instruction-tuning capabilities of LLMs themselves is far more significant. This investigation demonstrates the potential of LLMs to enhance automatic comprehension of scientific artifacts and for automatic model recovery and simulation.
The same real-life questions posed to different individuals may lead to different answers based on their unique situations. For instance, whether a student is eligible for a scholarship depends on eligibility conditions, such as major or degree required. ConditionalQA was proposed to evaluate models’ capability of reading a document and answering eligibility questions, considering *unmentioned* conditions. However, it is limited to questions on single documents, neglecting harder cases that may require *cross-document reasoning* and *optimization*, for example, “What is the maximum number of scholarships attainable?” Such questions over multiple documents are not only more challenging due to more context to understand, but also because the model has to (1) explore all possible combinations of unmentioned conditions and (2) understand the relationship between conditions across documents, to reason about the optimal outcome. To evaluate models’ capability of answering such questions, we propose a new dataset MDCR, which can reflect real-world challenges and serve as a new test bed for complex conditional reasoning that requires optimization. We evaluate this dataset using the most recent LLMs and demonstrate their limitations in solving this task. We believe this dataset will facilitate future research in answering optimization questions with unknown conditions.