Marlene Lutz
2025
Missing the Margins: A Systematic Literature Review on the Demographic Representativeness of LLMs
Indira Sen
|
Marlene Lutz
|
Elisa Rogers
|
David Garcia
|
Markus Strohmaier
Findings of the Association for Computational Linguistics: ACL 2025
Many applications of Large Language Models (LLMs) require them to either simulate people or offer personalized functionality, making the demographic representativeness of LLMs crucial for equitable utility. At the same time, we know little about the extent to which these models actually reflect the demographic attributes and behaviors of certain groups or populations, with conflicting findings in empirical research. To shed light on this debate, we review 211 papers on the demographic representativeness of LLMs. We find that while 29% of the studies report positive conclusions on the representativeness of LLMs, 30% of these do not evaluate LLMs across multiple demographic categories or within demographic subcategories. Another 35% and 47% of the papers concluding positively fail to specify these subcategories altogether for gender and race, respectively. Of the articles that do report subcategories, fewer than half include marginalized groups in their study. Finally, more than a third of the papers do not define the target population to whom their findings apply; of those that do define it either implicitly or explicitly, a large majority study only the U.S. Taken together, our findings suggest an inflated perception of LLM representativeness in the broader community. We recommend more precise evaluation methods and comprehensive documentation of demographic attributes to ensure the responsible use of LLMs for social applications.
2024
Local Contrastive Editing of Gender Stereotypes
Marlene Lutz
|
Rochelle Choenni
|
Markus Strohmaier
|
Anne Lauscher
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Stereotypical bias encoded in language models (LMs) poses a threat to safe language technology, yet our understanding of how bias manifests in the parameters of LMs remains incomplete. We introduce local contrastive editing that enables the localization and editing of a subset of weights in a target model in relation to a reference model. We deploy this approach to identify and modify subsets of weights that are associated with gender stereotypes in LMs. Through a series of experiments we demonstrate that local contrastive editing can precisely localize and control a small subset (< 0.5%) of weights that encode gender bias. Our work (i) advances our understanding of how stereotypical biases can manifest in the parameter space of LMs and (ii) opens up new avenues for developing parameter-efficient strategies for controlling model properties in a contrastive manner.
2022
SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings
Jan Engler
|
Sandipan Sikdar
|
Marlene Lutz
|
Markus Strohmaier
Findings of the Association for Computational Linguistics: EMNLP 2022
Adding interpretability to word embeddings represents an area of active research in textrepresentation. Recent work has explored the potential of embedding words via so-called polardimensions (e.g. good vs. bad, correct vs. wrong). Examples of such recent approachesinclude SemAxis, POLAR, FrameAxis, and BiImp. Although these approaches provide interpretabledimensions for words, they have not been designed to deal with polysemy, i.e. they can not easily distinguish between different senses of words. To address this limitation, we present SensePOLAR, an extension of the original POLAR framework that enables wordsense aware interpretability for pre-trained contextual word embeddings. The resulting interpretable word embeddings achieve a level ofperformance that is comparable to original contextual word embeddings across a variety ofnatural language processing tasks including the GLUE and SQuAD benchmarks. Our workremoves a fundamental limitation of existing approaches by offering users sense aware interpretationsfor contextual word embeddings.
Search
Fix author
Co-authors
- Markus Strohmaier 3
- Rochelle Choenni 1
- Jan Engler 1
- David Garcia 1
- Anne Lauscher 1
- show all...