Luning Yang
2025
Identifying Cellular Niches in Spatial Transcriptomics: An Investigation into the Capabilities of Large Language Models
Huanhuan Wei
|
Xiao Luo
|
Hongyi Yu
|
Jinping Liang
|
Luning Yang
|
Lixing Lin
|
Alexandra Popa
|
Xiting Yan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Spatial transcriptomic technologies enable measuring gene expression profile and spatial information of cells in tissues simultaneously. Clustering of captured cells/spots in the spatial transcriptomic data is crucial for understanding tissue niches and uncovering disease-related changes.Current methods to cluster spatial transcriptomic data encounter obstacles, including inefficiency in handling multi-replicate data, lack of prior knowledge incorporation, and producing uninterpretable cluster labels.We introduce a novel approach, LLMiniST, to identify spatial niche using a zero-shot large language models (LLMs) by transforming spatial transcriptomic data into spatial context prompts, leveraging gene expression of neighboring cells/spots, cell type composition, tissue information, and external knowledge. The model was further enhanced using a two-stage fine-tuning strategy for improved generalizability. We also develop a user-friendly annotation tool to accelerate the creation of well-annotated spatial dataset for fine-tuning.Comprehensive method performance evaluations showed that both zero-shot and fine-tunned LLMiniST had superior performance than current non-LLM methods in many circumstances. Notably, the two-stage fine-tuning strategy facilitated substantial cross-subject generalizability. The results demonstrate the feasibility of LLMs for tissue niche identification using spatial transcriptomic data and the potential of LLMs as a scalable solution to efficiently integrate minimal human guidance for improved performance in large-scale datasets.
Search
Fix author
Co-authors
- Jinping Liang 1
- Lixing Lin 1
- Xiao Luo 1
- Alexandra Popa 1
- Huanhuan Wei 1
- show all...
Venues
- acl1