Liu Yan


2025

pdf bib
Understanding the Dark Side of LLMs’ Intrinsic Self-Correction
Qingjie Zhang | Di Wang | Haoting Qian | Yiming Li | Tianwei Zhang | Minlie Huang | Ke Xu | Hewu Li | Liu Yan | Han Qiu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Intrinsic self-correction was initially proposed to improve LLMs’ responses via feedback solely based on their inherent capability. However, recent works show that LLMs’ intrinsic self-correction fails without oracle labels as feedback. In this paper, our research goal is to *interpret LLMs’ intrinsic self-correction for different tasks, especially for those failure cases.* By including one simple task and three complex tasks with state-of-the-art (SOTA) LLMs like ChatGPT, Llama, and DeepSeek, we design three interpretation methods to reveal the dark side of LLMs’ intrinsic self-correction. We identify intrinsic self-correction can (1) cause LLMs to waver both intermedia and final answers and lead to prompt bias on simple factual questions; (2) introduce human-like cognitive bias on complex tasks. In light of our findings, we also provide two simple yet effective strategies for alleviation: question repeating and supervised fine-tuning with a few samples. We open-source our work at https://x-isc.info/.

2024

pdf bib
Course-Correction: Safety Alignment Using Synthetic Preferences
Rongwu Xu | Yishuo Cai | Zhenhong Zhou | Renjie Gu | Haiqin Weng | Liu Yan | Tianwei Zhang | Wei Xu | Han Qiu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

The risk of harmful contents generated by large language models (LLMs) becomes a critical concern. This paper systematically evaluates and enhances LLMs’ capability to perform course-correction, , the model can steer away from generating harmful content autonomously. First, we introduce the C2-Eval benchmark for quantitative assessment and analyze 10 popular LLMs, revealing varying proficiency of current safety-tuned LLMs in course-correction.To improve, we propose fine-tuning LLMs with preference learning, emphasizing the preference for timely course-correction. Using an automated pipeline, we create C2-Syn, a synthetic C2-Syn with 750K pairwise preferences, to teach models the concept of timely course-correction through data-driven learning.Experiments on Llama2-Chat 7B and Qwen2 7B show that our method effectively enhances course-correction skills without affecting general performance. Additionally, it effectively improves LLMs’ safety, particularly in resisting jailbreak attacks.