Lin Lu
2025
Stealing Training Data from Large Language Models in Decentralized Training through Activation Inversion Attack
Chenxi Dai
|
Lin Lu
|
Pan Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Decentralized training has become a resource-efficient framework to democratize the training of large language models (LLMs). However, the privacy risks associated with this framework, particularly due to the potential inclusion of sensitive data in training datasets, remain unexplored. This paper identifies a novel and realistic attack surface: the privacy leakage from training data in decentralized training, and proposes activation inversion attack (AIA) for the first time. AIA first constructs a shadow dataset comprising text labels and corresponding activations using public datasets. Leveraging this dataset, an attack model can be trained to reconstruct the training data from activations in victim decentralized training. We conduct extensive experiments on various LLMs and publicly available datasets to demonstrate the susceptibility of decentralized training to AIA. These findings highlight the urgent need to enhance security measures in decentralized training to mitigate privacy risks in training LLMs.
2024
Virtual Context Enhancing Jailbreak Attacks with Special Token Injection
Yuqi Zhou
|
Lin Lu
|
Ryan Sun
|
Pan Zhou
|
Lichao Sun
Findings of the Association for Computational Linguistics: EMNLP 2024
Jailbreak attacks on large language models (LLMs) involve inducing these models to generate harmful content that violates ethics or laws, posing a significant threat to LLM security. Current jailbreak attacks face two main challenges: low success rates due to defensive measures and high resource requirements for crafting specific prompts. This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks. Virtual Context addresses these challenges by significantly increasing the success rates of existing jailbreak methods and requiring minimal background knowledge about the target model, thus enhancing effectiveness in black-box settings without additional overhead. Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40% across various LLMs. Additionally, applying Virtual Context to original malicious behaviors still achieves a notable jailbreak effect. In summary, our research highlights the potential of special tokens in jailbreak attacks and recommends including this threat in red-teaming testing to comprehensively enhance LLM security.