Multilingual audio-text retrieval (ML-ATR) is a challenging task that aims to retrieve audio clips or multilingual texts from databases. However, existing ML-ATR schemes suffer from inconsistencies for instance similarity matching across languages. To address the inconsistency issue in multilingual audio-text retrieval, we first identify two intuitive factors that contribute to inconsistency: misalignment between audio and multilingual text embeddings, and error propagation in model optimization. By systematically analyzing these factors, we derive theoretical weight error upper bounds for quantifying their effects and find that the main source of inconsistency is the data distribution error during training. This finding motivates our solution to reduce data distribution errors.We propose a consistent ML-ATR scheme using 1-to-k contrastive learning and audio-English co-anchor contrastive learning, aiming to mitigate the negative impact of data distribution error on recall and consistency in ML-ATR. Experimental results on the translated AudioCaps and Clotho datasets show that our scheme achieves state-of-the-art performance on recall and consistency metrics for eight mainstream languages, including English. Our code will be available at https://github.com/ATRI-ACL/ATRI-ACL.
Spoken language understanding (SLU) inevitably suffers from error propagation from automatic speech recognition (ASR) in actual scenarios. Some recent works attempt to alleviate this issue through contrastive learning. However, they (1) sample negative pairs incorrectly in pre-training; (2) only focus on implicit metric learning while neglecting explicit erroneous predictions; (3) treat manual and ASR transcripts indiscriminately. In this paper, we propose a novel framework termed PCAD, which can calibrate bias and errors and achieve adaptive-balanced decoupling training. Specifically, PCAD utilizes a prototype-based loss to aggregate label and prediction priors and calibrate bias and error-prone semantics for better inter-class discrimination and intra-class consistency. We theoretically analyze the effect of this loss on robustness enhancement. Further, we leverage a teacher-student model for asymmetric decoupling training between different transcripts and formulate a novel gradient-sensitive exponential moving averaging (GS-EMA) algorithm for adaptive balance of accuracy and robustness. Experiments on three datasets show that PCAD significantly outperforms existing approaches and achieves new state-of-the-art performance.
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which hinders their application in multimodal understanding and decision-making. In this work, we introduce a novel plug-and-play train-free decoding algorithm named Game and Tree based Hallucination Mitigation (GTHM), designed for mitigating VH. GTHM is inspired by empirical observations that the fuzziness of multi-granularity view perception exacerbates VH. Based on this, GTHM leverages visual information to construct a coarse-to-fine visual view tree (CFTree) that organizes visual objects, attributes, and relationships in a hierarchical manner. Additionally, we innovatively model the optimal visual-token matching process on the CFTree as the cooperative game. Specifically, we define the Tree-based Shapley Value (TSV) for each visual view on the CFTree to assess its significant contribution to the overall visual understanding, thereby determining the optimal visual granularity. Subsequently, we utilize the TSV as guidance to implement adaptive weight contrastive decoding to achieve vision-aware decoding. Extensive experiments on four popular benchmarks confirm the effectiveness of our GTHM in alleviating VH across different LVLM families without additional training or post-processing. Our code is published at https://github.com/mengchuang123/GTHM.
Pre-trained language models (PLMs) that rely solely on textual data may exhibit limitations in multimodal semantics comprehension. Existing solutions attempt to alleviate this issue by incorporating explicit image retrieval or generation techniques.However, these methods: (1) focus exclusively on the static image modality; (2) inevitably encounter modality gaps and noise; (3) indiscriminately treat all modalities.In this paper, we propose a novel multimodal-augmented framework termed MaCSC, which can infuse multimodal semantics into PLMs and facilitate a self-balancing calibration of information allocation.Specifically, MaCSC obtains modal-specific conceptual prototypes from contrastive pre-training models (e.g., CLIP),and aggregates the intra- and inter-modal semantics of the conceptual prototype to enhance PLMs.In addition, we utilize a novel self-balancing contrastive loss to achieve multi-scale self-balancing calibration of multimodal information during fine-tuning PLMs.Experimental results show that MaCSC consistently improves the performance of PLMs across various architectures and scales, and outperforms competitive baselines on multiple NLP tasks.